Fused polycyclic indeno[1,2-b]fluorene derivatives with aryl substituents at the 6,12-positions have been prepared as a potential antiaromatic 20π electronic system. They showed strong absorptions in the visible region and amphoteric redox properties. The quinoid-type molecular structures were revealed by X-ray crystal-structure analysis, which indicated that the bond lengths of the quinoid unit depend on the aryl substituents. Whereas nucleus-independent chemical shift NICS(1) calculations indicate the antiaromatic nature of the s-indacene core, they have higher stability than substituted acene derivatives. The derivatives with difluorophenyl or anthryl groups were stable in solution. Vapor-deposited thin films showed ambipolar carrier transportation in the field-effect transistor devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201200591 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University 94 Weijin Road, Tianjin, China.
The diverse utility of acyclic vinylsilanes has driven the interest in the synthesis of enantioenriched vinylsilanes bearing a Si-stereogenic center. However, the predominant approaches for catalytic asymmetric generation of Si-stereogenic vinylsilanes have mainly relied on transition metal-catalyzed reactions of alkynes with different silicon sources. Here we successfully realize the enantioselective synthesis of linear silicon-stereogenic vinylsilanes with good yields and enantiomeric ratios from simple alkenes under rhodium catalysis.
View Article and Find Full Text PDFChemistry
January 2025
Okayama Daigaku Daigakuin Shizen Kagaku Kenkyuka, Division of Applied Chemistry, JAPAN.
The Scholl reaction has been used to synthesize a variety of polycyclic aromatic hydrocarbons, where 1,2-aryl shifts have sometimes occurred to yield unique rearrangement products. However, such 1,2-aryl shifts are often uncontrollable, and the selective and divergent synthesis with or without rearrangement is desired. Here, we achieved the control of the rearrangement in the Scholl reaction of carbazoles by the N-substituents.
View Article and Find Full Text PDFPhotosynth Res
January 2025
Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
Pheophytin-a derivatives possessing plastoquinone and phylloquinone analogs in the peripheral 3-substituent were prepared by Friedel-Crafts reactions of a 3-hydroxymethyl-chlorin as one of the chlorophyll-a derivatives with benzo- and naphthohydroquinones, respectively, and successive oxidation of the 1,4-dihydroxy-aryl groups in the resulting dehydration products. The 3-quinonylmethyl-chlorins exhibited ultraviolet-visible absorption and circular dichroism spectra in acetonitrile, which were composed of those of the starting 3-hydroxymethyl-chlorin and the corresponding methylated benzo- and naphthoquinones. No intramolecular interaction between the chlorin and quinone π-systems was observed in the solution owing to the methylene spacer.
View Article and Find Full Text PDFSci Rep
January 2025
Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P. O. Box 33, Nizwa, Oman.
Diabetes mellitus, particularly type 2 diabetes, is a growing global health challenge characterized by chronic hyperglycemia due to insulin resistance. One therapeutic approach to managing this condition is the inhibition of α-glucosidase, an enzyme involved in carbohydrate digestion, to reduce postprandial blood glucose levels. In this study, a series of thiosemicarbazide-linked quinoline-piperazine derivatives were synthesized and evaluated for their α-glucosidase inhibitory activity, to identify new agents for type 2 diabetes management.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, Donostia-San Sebastián 20018, Spain.
A challenging aspect in the synthesis of covalent organic frameworks (COFs) that goes beyond the framework's structure and topology is interpenetration, where two or more independent frameworks are mechanically interlocked with each other. Such interpenetrated or interlocked frameworks are commonly found in three-dimensional (3D) COFs with large pores. However, interlocked two-dimensional (2D) COFs are rarely seen in the literature, as 2D COF layers typically crystallize in stacks that maximize stabilization through π-stacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!