A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. | LitMetric

Lysosomes are the major cellular site for clearance of defective organelles and digestion of internalized material. Demand on lysosomal capacity can vary greatly, and lysosomal function must be adjusted to maintain cellular homeostasis. Here, we identified an interaction between the lysosome-localized mechanistic target of rapamycin complex 1 (mTORC1) and the transcription factor TFEB (transcription factor EB), which promotes lysosome biogenesis. When lysosomal activity was adequate, mTOR-dependent phosphorylation of TFEB on Ser(211) triggered the binding of 14-3-3 proteins to TFEB, resulting in retention of the transcription factor in the cytoplasm. Inhibition of lysosomal function reduced the mTOR-dependent phosphorylation of TFEB, resulting in diminished interactions between TFEB and 14-3-3 proteins and the translocation of TFEB into the nucleus, where it could stimulate genes involved in lysosomal biogenesis. These results identify TFEB as a target of mTOR and suggest a mechanism for matching the transcriptional regulation of genes encoding proteins of autophagosomes and lysosomes to cellular need. The closely related transcription factors MITF (microphthalmia transcription factor) and TFE3 (transcription factor E3) also localized to lysosomes and accumulated in the nucleus when lysosome function was inhibited, thus broadening the range of physiological contexts under which this regulatory mechanism may prove important.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437338PMC
http://dx.doi.org/10.1126/scisignal.2002790DOI Listing

Publication Analysis

Top Keywords

transcription factor
24
tfeb
8
factor tfeb
8
lysosomal function
8
mtor-dependent phosphorylation
8
phosphorylation tfeb
8
14-3-3 proteins
8
transcription
7
lysosomal
5
factor
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!