We report the case of a 32-year-old male with spontaneous crystalline lens dislocation into the anterior chamber with corneal touch and increased intraocular pressure. The case was handled in a conservative way: before bringing the patient to supine position, pharmacological pupil dilation with tropicamide plus phenylephrine was performed. One drop was instilled every 15 min for 1 hour. Once the posterior displacement of the lens behind the iris was confirmed, 2 % pilocarpine was used to reverse pupil dilation. The patient remained on topical 2 % pilocarpine and 5 % sodium chloride solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10792-012-9592-7 | DOI Listing |
J Optom
January 2025
Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium; Visual Optics Lab Antwerp (VOLANTIS), Faculty of Medicine and Health Sciences, Antwerp University, Wilrijk, Belgium. Electronic address:
Background: The maximum accommodative range is a useful indication of visual function. It decreases with age, but the exact cause of this decrease is not fully understood. It is associated with the increasing rigidity of the lens and changes to the lens shape, as well as the geometry of the zonular attachments.
View Article and Find Full Text PDFCureus
December 2024
Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, JPN.
Objectives This study aimed to identify the etiology and the direction of dislocation of the natural crystalline lens or intraocular lens (IOL) in IOL intrascleral fixation surgery and to determine the change in intraocular pressure (IOP) after surgery. Methods We retrospectively investigated the diagnosis, direction of lens and IOL dislocation, and IOP before and after surgery (preoperatively and one day, one week, and one month postoperatively) in 236 eyes from 228 patients who underwent IOL intrascleral fixation at Chiba University Hospital between February 2015 and September 2020. Results IOL intrascleral fixation was performed in 48 (20.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Faculty of Health, Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Bishops Hall Lane, Chelmsford, United Kingdom.
Purpose: To determine whether lens biomechanical or geometric changes contribute to the decline in the accommodative capacity of the human eye, and to examine any differences in zonular function between different age groups.
Methods: Eighteen finite element whole eye models were developed to simulate the accommodative process. Six models were constructed in each of the two age cohorts, from the fourth and the sixth decades of life using data from ex vivo human lenses.
Genes (Basel)
December 2024
Department of Ophthalmology, Southend University Hospital, Southend-on-Sea SS0 0RY, UK.
The zonular fibres are formed primarily of fibrillin-1, a large extracellular matrix (ECM) glycoprotein, and also contain other constituents such as LTBP-2, ADAMTSL6, MFAP-2 and EMILIN-1, amongst others. They are critical for sight, holding the crystalline lens in place and being necessary for accommodation. Zonulopathies refer to conditions in which there is a lack or disruption of zonular support to the lens and may clinically be manifested as ectopia lens (EL)-defined as subluxation of the lens outside of the pupillary plane or frank displacement (dislocation) into the vitreous or anterior segment.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France.
Metal-organic frameworks (MOFs) combined with polymers as hybrid materials offer numerous advantages such as enhanced performances through synergistic effects at their interface. The primary challenge in developing polymer/MOF hybrid matrix films is ensuring optimal dispersion and strong adhesion of crystalline MOFs to the polymer without aggregation, weak interaction, or phase separation. In this study, hierarchically porous UiO-66_NH/chitosan (ZrCSx-) films were designed by crystallizing UiO-66_NH within a chitosan (CS) skeleton.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!