Although N-acetyl groups are common in nature, N-glycolyl groups are rare. Mammals express two major sialic acids, N-acetylneuraminic acid and N-glycolylneuraminic acid (Neu5Gc). Although humans cannot produce Neu5Gc, it is detected in the epithelial lining of hollow organs, endothelial lining of the vasculature, fetal tissues, and carcinomas. This unexpected expression is hypothesized to result via metabolic incorporation of Neu5Gc from mammalian foods. This accumulation has relevance for diseases associated with such nutrients, via interaction with Neu5Gc-specific antibodies. Little is known about how ingested sialic acids in general and Neu5Gc in particular are metabolized in the gastrointestinal tract. We studied the gastrointestinal and systemic fate of Neu5Gc-containing glycoproteins (Neu5Gc-glycoproteins) or free Neu5Gc in the Neu5Gc-free Cmah(-/-) mouse model. Ingested free Neu5Gc showed rapid absorption into the circulation and urinary excretion. In contrast, ingestion of Neu5Gc-glycoproteins led to Neu5Gc incorporation into the small intestinal wall, appearance in circulation at a steady-state level for several hours, and metabolic incorporation into multiple peripheral tissue glycoproteins and glycolipids, thus conclusively proving that Neu5Gc can be metabolically incorporated from food. Feeding Neu5Gc-glycoproteins but not free Neu5Gc mimics the human condition, causing tissue incorporation into human-like sites in Cmah(-/-) fetal and adult tissues, as well as developing tumors. Thus, glycoproteins containing glycosidically linked Neu5Gc are the likely dietary source for human tissue accumulation, and not the free monosaccharide. This human-like model can be used to elucidate specific mechanisms of Neu5Gc delivery from the gut to tissues, as well as general mechanisms of metabolism of ingested sialic acids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3436511 | PMC |
http://dx.doi.org/10.1074/jbc.M112.364182 | DOI Listing |
Front Vet Sci
January 2025
Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China.
Introduction: The H9N2 avian influenza virus is widely disseminated in poultry and poses a zoonotic threat, despite vaccination efforts. Mutations at residue 198 of hemagglutinin (HA) are critical for antigenic variation and receptor-binding specificity, but the underlying molecular mechanisms remain unclear. This study explores the molecular mechanisms by which mutations at the HA 198 site affect the antigenicity, receptor specificity, and binding affinity of the H9N2 virus.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Department of Physics, Faculty of Sciences, FAU Erlangen-Nuremberg, Erlangen, Germany.
The glycocalyx is a dense and dynamic layer of glycosylated species that covers every cell in the human body. It plays crucial roles in various cellular processes in health and disease, such as cancer immune evasion, cancer immune therapy, blastocyst implantation, and functional attenuation of membrane protein diffusion. In addition, alterations in glycocalyx structure may play an important role in ocular surface diseases, e.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
January 2025
Department of Cardiovascular Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China.
Objectives: To investigate the mechanism through which N-acetylneuraminic acid (Neu5Ac) exacerbates hypoxia/reoxygenation (H/R) injury in rat cardiomyocytes (H9C2 cells).
Methods: H9C2 cells were cultured in hypoxia and glucose deprivation for 8 h followed by reoxygenation for different durations to determine the optimal reoxygenation time. Under the optimal H/R protocol, the cells were treated with 0, 5, 10, 20, 30, 40, 50, and 60 mmol/L Neu5Ac during reoxygenation to explore the optimal drug concentration.
Cell Rep
January 2025
Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA. Electronic address:
Neuraminidase 1 (NEU1) cleaves terminal sialic acids from sialoglycoproteins in endolysosomes and at the plasma membrane. As such, NEU1 regulates immune cells, primarily those of the monocytic lineage. Here, we examine how Neu1 influences microglia by modulating the sialylation of full-length Trem2 (Trem2-FL), a multifunctional receptor that regulates microglial survival, phagocytosis, and cytokine production.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computational Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
The clownfish - sea anemone system is a great example of symbiotic mutualism where host «toxicity» does not impact its symbiont partner, although the underlying protection mechanism remains unclear. The regulation of nematocyst discharge in cnidarians involves N-acetylated sugars like sialic acid, that bind chemoreceptors on the tentacles of sea anemones, leading to the release of stings. It has been suggested that clownfish could be deprived of sialic acid on their skin surface, sparing them from being stung and facilitating mutualism with sea anemones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!