Abalone Haliotis midae exhibiting typical clinical signs of tubercle mycosis were discovered in South African culture facilities in 2006, posing a significant threat to the industry. The fungus responsible for the outbreak was identified as a Peronosporomycete, Halioticida noduliformans. Currently, histopathology and gross observation are used to diagnose this disease, but these 2 methods are neither rapid nor sensitive enough to provide accurate and reliable diagnosis. Real-time quantitative PCR (qPCR) is a rapid and reliable method for the detection and quantification of a variety of pathogens, so therefore we aimed to develop a qPCR assay for species-specific detection and quantification of H. noduliformans. Effective extraction of H. noduliformans genomic DNA from laboratory grown cultures, as well as from spiked abalone tissues, was accomplished by grinding samples using a pellet pestle followed by heat lysis in the presence of Chelax-100 beads. A set of oligonucleotide primers was designed to specifically amplify H. noduliformans DNA in the large subunit (LSU) rRNA gene, and tested for cross-reactivity to DNA extracted from related and non-related fungi isolated from seaweeds, crustaceans and healthy abalone; no cross-amplification was detected. When performing PCR assays in an abalone tissue matrix, an environment designed to be a non-sterile simulation of environmental conditions, no amplification occurred in the negative controls. The qPCR assay sensitivity was determined to be approximately 0.28 pg of fungal DNA (~2.3 spores) in a 25 µl reaction volume. Our qPCR technique will be useful for monitoring and quantifying H. noduliformans for the surveillance and management of abalone tubercle mycosis in South Africa.

Download full-text PDF

Source
http://dx.doi.org/10.3354/dao02468DOI Listing

Publication Analysis

Top Keywords

halioticida noduliformans
8
abalone tissues
8
tubercle mycosis
8
detection quantification
8
qpcr assay
8
noduliformans
6
abalone
6
development preliminary
4
preliminary evaluation
4
evaluation real-time
4

Similar Publications

Halioticida noduliformans infection in eggs of lobster (Homarus gammarus) reveals its generalist parasitic strategy in marine invertebrates.

J Invertebr Pathol

May 2018

Pathology and Microbial Systematics, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, United Kingdom; The Natural History Museum, Cromwell Road, Kensington, London SW7 5BD, United Kingdom.

A parasite exhibiting Oomycete-like morphology and pathogenesis was isolated from discoloured eggs of the European lobster (Homarus gammarus) and later found in gill tissues of adults. Group-specific Oomycete primers were designed to amplify the 18S ribosomal small subunit (SSU), which initially identified the organism as the same as the 'Haliphthoros' sp. NJM 0034 strain (AB178865.

View Article and Find Full Text PDF

Emerging oomycete threats to plants and animals.

Philos Trans R Soc Lond B Biol Sci

December 2016

The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK

Oomycetes, or water moulds, are fungal-like organisms phylogenetically related to algae. They cause devastating diseases in both plants and animals. Here, we describe seven oomycete species that are emerging or re-emerging threats to agriculture, horticulture, aquaculture and natural ecosystems.

View Article and Find Full Text PDF

Abalone Haliotis midae exhibiting typical clinical signs of tubercle mycosis were discovered in South African culture facilities in 2006, posing a significant threat to the industry. The fungus responsible for the outbreak was identified as a Peronosporomycete, Halioticida noduliformans. Currently, histopathology and gross observation are used to diagnose this disease, but these 2 methods are neither rapid nor sensitive enough to provide accurate and reliable diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!