'Seeding' with protease to optimize protein crystallization conditions in in situ proteolysis.

Acta Crystallogr Sect F Struct Biol Cryst Commun

State Key Laboratory of Agribiotechnology and MOA Key Laboratory of Plant Pathology, China Agricultural University, 2 Yuanmingyuan Xilu, Beijing 100193, People's Republic of China.

Published: May 2012

In situ proteolysis is one of the most effective rescue strategies for protein crystallization, and optimization of the ratio between the protein and the protease is one of the key steps in the process. Seeding is a very powerful tool to optimize crystallization conditions and can be performed by most crystallization robots. Addition of protease instead of seed stock using a robot can be used to optimize the concentration of protease in in situ proteolysis experiments and has been successfully tested using two proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374523PMC
http://dx.doi.org/10.1107/S174430911201161XDOI Listing

Publication Analysis

Top Keywords

situ proteolysis
12
protein crystallization
8
crystallization conditions
8
'seeding' protease
4
protease optimize
4
optimize protein
4
crystallization
4
conditions situ
4
proteolysis situ
4
proteolysis effective
4

Similar Publications

Macrocyclic Peptide-Based Dual-Sensor Platform for Linkage-Specific Visualization of Ubiquitin Chain Assembling in Live Cells.

Anal Chem

January 2025

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Intracellular monitoring of protein ubiquitination and differentiating polyubiquitin chain topology are crucial for understanding life processes and drug discovery, which is challenged by the high complexity of the ubiquitination process and a lack of molecular tools. Herein, a synthetic dual-sensor platform specific for K48-linked ubiquitin oligomers was tailored for visualization of polyubiquitin chain assembling in live biosystems. This is achieved using macrocyclic peptides as recognition motifs and a tetraphenylethylene derivative as an activatable reporter.

View Article and Find Full Text PDF

Protein hydrolysis targeted chimeras (PROTACs) represent a different therapeutic approach, particularly relevant for overcoming challenges associated with traditional small molecule inhibitors. These challenges include targeting difficult proteins that are often deemed "undruggable" and addressing issues of acquired resistance. PROTACs employ the body's own E3 ubiquitin ligases to induce the degradation of specific proteins of interest (POIs) through the ubiquitin-proteasome pathway.

View Article and Find Full Text PDF

In Vivo Self-Assembly of PROTACs by Bioorthogonal Chemistry for Precision Cancer Therapy.

Angew Chem Int Ed Engl

December 2024

Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.

Proteolysis targeting chimeras (PROTACs) hold immense promise for targeted protein degradation; however, challenges such as off-target effects, poor drug-likeness properties, and the "hook effect" remain. This study introduces Nano-Click-formed PROTACs (Nano-CLIPTACs) for precise tumor protein degradation in vivo. Traditional PROTACs with high molecular weight were first divided into two smaller druglike precursors capable of self-assembling to form functional PROTACs through a bioorthogonal reaction.

View Article and Find Full Text PDF

The present study investigates VKINE, a bioactive proteolytic fragment of the proteoglycan VCAN, as a novel and significant element in the tumor extracellular matrix (ECM). Although VKINE has been recognized for its immunomodulatory potential in certain tumor types, its impact on ECM degradation and prognostic implications remains poorly understood. : This study aimed to evaluate VCAN proteolysis and its association with ADAMTS enzymes involved in extracellular matrix remodeling in spontaneous canine mammary gland cancer.

View Article and Find Full Text PDF

Proteomic analysis of giant panda testicular tissue of different age groups.

PeerJ

December 2024

Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China.

Background: The reproductive ability of male giant pandas has been a major complicating factor in the conservation of the species. While it is well known that the testis produces sperm and secretes androgens, a process that requires precise regulation of various proteins, at present, there has been no systematic study on the composition of proteins in the testis of the giant pandas. Therefore, this study aims to apply proteomics to explore the regulation of proteins in the testes of giant pandas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!