Thousands of mechanical blood pumps are currently providing circulatory support, and the incidence of their use continues to increase each year. As the use of blood pumps becomes more pervasive in the treatment of those patients with congestive heart failure, critical advances in design features to address known limitations and the integration of novel technologies become more imperative. To advance the current state-of-the-art in blood pump design, this study investigates the inclusion of pitch-adjusting blade features in intravascular blood pumps as a means to increase energy transfer; an approach not explored to date. A flexible impeller prototype was constructed with a configuration to allow for a variable range of twisted blade geometries of 60-250°. Hydraulic experiments using a blood analog fluid were conducted to characterize the pressure-flow performance for each of these twisted positions. The flexible, twisted impeller was able to produce 1-25 mmHg for 0.5-4 L/min at rotational speeds of 5,000-8,000 RPM. For a given twisted position, the pressure rise was found to decrease as a function of increasing flow rate, as expected. Generally, a steady increase in the pressure rise was observed as a function of higher twisted degrees for a constant rotational speed. Higher rotational speeds for a specific twisted impeller configuration resulted in a more substantial pressure generation. The findings of this study support the continued exploration of this unique design approach in the development of intravascular blood pumps.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MAT.0b013e31825d018eDOI Listing

Publication Analysis

Top Keywords

blood pumps
16
intravascular blood
12
blood pump
8
twisted impeller
8
rotational speeds
8
pressure rise
8
blood
7
twisted
6
controlled pitch-adjustment
4
impeller
4

Similar Publications

Pump is a vital component for expelling the perfusate in small animal isolated organ normothermic machine perfusion (NMP) systems whose flexible structure and rhythmic contraction play a crucial role in maintaining perfusion system homeostasis. However, the continuous extrusion forming with the rigid stationary shaft of the peristaltic pumps can damage cells, leading to metabolic disorders and eventual dysfunction of transplanted organs. Here, we developed a novel biomimetic blood-gas system (BBGs) for preventing cell damage.

View Article and Find Full Text PDF

Advancement of the Dragon Heart 7-Series for Pediatric Patients With Heart Failure.

Artif Organs

January 2025

BioCirc Research Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA.

Background: Safe and effective pediatric blood pumps continue to lag far behind those developed for adults. To address this growing unmet clinical need, we are developing a hybrid, continuous-flow, magnetically levitated, pediatric total artificial heart (TAH). Our hybrid TAH design, the Dragon Heart (DH), integrates both an axial flow and centrifugal flow blood pump within a single, compact housing.

View Article and Find Full Text PDF

Lymphatic system failures contribute to cardiovascular and various other diseases. A critical function of the lymphatic vascular system is the active pumping of fluid from the interstitium back into the blood circulation by periodic contractions of lymphatic muscle cells (LMCs) in the vessel walls. As in cardiac pacemaking, these periodic contractions can be interpreted as occurring due to linked pacemaker oscillations in the LMC membrane potential (M-clock) and calcium concentration (C-clock).

View Article and Find Full Text PDF

Dysfunctional lymphatic drainage from the central nervous system (CNS) has been linked to neuroinflammatory and neurodegenerative disorders, but our understanding of the lymphatic contribution to CNS fluid autoregulation remains limited. Here, we studied forces that drive the outflow of the cerebrospinal fluid (CSF) into the deep and superficial cervical lymph nodes (dcLN and scLN) and tested how the blockade of lymphatic networks affects CNS fluid homeostasis. Outflow to the dcLN occurred spontaneously in the absence of lymphatic pumping and was coupled to intracranial pressure (ICP), whereas scLN drainage was driven by pumping.

View Article and Find Full Text PDF

Progress of extracorporeal centrifugal pumps for mechanical circulatory supports.

J Artif Organs

January 2025

Department of Artificial Organs, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shinmachi, Suita, Osaka, 5648565, Japan.

This review traces the evolution of centrifugal blood pumps in mechanical circulatory support (MCS) systems. Initially met with concerns over blood damage and thrombus formation, centrifugal pumps have become crucial components in ventricular assist devices (VADs) and extracorporeal membrane oxygenation (ECMO) due to their simplified drive mechanisms and adaptability. This paper outlines three generations of centrifugal pump development: first-generation pumps with sealing components, second-generation pumps utilizing pivot bearings, and third-generation pumps employing contactless bearings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!