Information on how emerging pathogens can invade and persist and spread within host populations remains sparse. In the 1980s, a multidrug-resistant Salmonella enterica serotype Typhimurium clone lysogenized by a bacteriophage carrying the sopE virulence gene caused an epidemic among cattle and humans in Europe. Here we show that phage-mediated horizontal transfer of the sopE gene enhances the production of host-derived nitrate, an energetically highly valuable electron acceptor, in a mouse colitis model. In turn, nitrate fuels a bloom of S. Typhimurium in the gut lumen through anaerobic nitrate respiration while suppressing genes for the utilization of energetically inferior electron acceptors such as tetrathionate. Through this mechanism, horizontal transfer of sopE can enhance the fitness of S. Typhimurium, resulting in its significantly increased abundance in the feces. IMPORTANCE During gastroenteritis, Salmonella enterica serotype Typhimurium can use tetrathionate respiration to edge out competing microbes in the gut lumen. However, the concept that tetrathionate respiration confers a growth benefit in the inflamed gut is not broadly applicable to other host-pathogen combinations because tetrathionate respiration is a signature trait used to differentiate Salmonella serotypes from most other members of the family Enterobacteriaceae. Here we show that by acquiring the phage-carried sopE gene, S. Typhimurium can drive the host to generate an additional respiratory electron acceptor, nitrate. Nitrate suppresses genes for the utilization of energetically inferior electron acceptors such as tetrathionate while enhancing the luminal growth of S. Typhimurium through anaerobic nitrate respiration. Pathways for anaerobic nitrate respiration are widely conserved among members of the family Enterobacteriaceae, thereby making our observations relevant to other enteric pathogens whose relative abundance in the intestinal lumen increases during infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374392PMC
http://dx.doi.org/10.1128/mBio.00143-12DOI Listing

Publication Analysis

Top Keywords

nitrate respiration
16
anaerobic nitrate
12
tetrathionate respiration
12
nitrate
8
salmonella enterica
8
enterica serotype
8
serotype typhimurium
8
horizontal transfer
8
transfer sope
8
sope gene
8

Similar Publications

Unlabelled: The intestinal diarrheal pathogen colonizes the host terminal ileum, a microaerophilic, glucose-poor, nitrate-rich environment. In this environment, respires nitrate and increases transport and utilization of alternative carbon sources via the cAMP receptor protein (CRP), a transcription factor that is active during glucose scarcity. Here we show that nitrate respiration in aerated cultures is under control of CRP and, therefore, glucose availability.

View Article and Find Full Text PDF

Phycospheric Bacteria Alleviate the Stress of Erythromycin on by Regulating Nitrogen Metabolism.

Plants (Basel)

January 2025

Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China.

Macrolide pollution has attracted a great deal of attention because of its ecotoxic effects on microalgae, but the role of phycospheric bacteria under antibiotic stress remains unclear. This study explored the toxic effects of erythromycin (ERY) on the growth and nitrogen metabolism of ; then, it analyzed and predicted the effects of the composition and ecological function of phycospheric bacteria on microalgae under ERY stress. We found that 0.

View Article and Find Full Text PDF

Metals have been used throughout history to manage disease. With the rising incidence of antibiotic-resistant bacterial strains, metal-based antimicrobials (MBAs) have re-emerged as an alternative to combat infections. Gallium nitrate has shown promising efficacy against several pathogens.

View Article and Find Full Text PDF

Environmental drivers of stream metabolism in a middle TN headwater stream.

PLoS One

December 2024

Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, Tennessee, United States of America.

Monitoring the seasonal and diurnal variations in headwater stream metabolic regimes can provide critical information for understanding how ecosystems will respond to future environmental changes. In East Fork Creek, a headwater stream in middle Tennessee, week-long field campaigns were set up each month from May 2022 to May 2023 to collect stream metabolism estimators. In a more extensive field campaign from July 2-5 in 2022, diel signals were observed for temperature, pH, turbidity, and concentrations of Ca, Mg, K, Se, Fe, Ba, chloride, nitrate, DIC, DO, DOC, and total algae.

View Article and Find Full Text PDF

Optimized Mn cycle enhanced synchronous removal of nitrate and antibiotics driven by manganese oxides/solid carbon composites: Microbiota assembly patterns and electron transport.

J Hazard Mater

December 2024

Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences (Peking University), Ministry of Education, Beijing 100871, PR China. Electronic address:

The reactive substance consisting manganese oxides (MnOx) and solid carbon have been reported to be effective in polishing secondary wastewater; however, the treatment characteristics and mechanism remains limited. In this study, MnOx/carbon (Mn-C) composites were applied in biofilters to evaluate simultaneous removal of nitrate and sulfamethoxazole (SMX), with the single carbon composites as control. Results showed that the effluent concentrations of NO-N and SMX were below 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!