An efficient method for the synthesis of substituted isoquinolinium salts from benzaldehydes, amines, and alkynes via ruthenium-catalyzed C-H bond activation and annulation in one pot is described.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol301445rDOI Listing

Publication Analysis

Top Keywords

c-h bond
8
bond activation
8
synthesis substituted
8
substituted isoquinolinium
8
isoquinolinium salts
8
salts benzaldehydes
8
benzaldehydes amines
8
amines alkynes
8
ruii-catalyzed c-h
4
activation synthesis
4

Similar Publications

The chemical reactivity between benzene and the "naked" acyclic carbene-like (G13X) species, having two bulky N-heterocyclic boryloxy ligands at the Group 13 center, was theoretically assessed using density functional theory computations. Our theoretical studies show that (BX) preferentially undergoes C-H bond insertion with benzene, both kinetically and thermodynamically, whereas the (AlX) analogue favors a reversible [4 + 1] cycloaddition. Conversely, the heavier carbene analogues ((GaX), (InX), and (TlX)) are not expected to engage in a reaction with benzene.

View Article and Find Full Text PDF

Optically pure monosubstituted [n]paracyclophanes are promising candidates for material synthesis, asymmetric catalysis, and drug discovery. Thus far, only a few catalytic asymmetric synthesis processes have been reported for assessing these stained atropisomers. In this study, we describe a highly enantioselective synthesis of monosubstituted [n]paracyclophanes by combining desymmetrization and kinetic resolution.

View Article and Find Full Text PDF

Mimicking the Reactivity of LPMOs with a Mononuclear Cu Complex.

Eur J Inorg Chem

May 2024

Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.

Lytic polysaccharide monooxygenases (LPMOs) are Cu-dependent metalloenzymes that catalyze the hydroxylation of strong C-H bonds in polysaccharides using O or HO as oxidants (monooxygenase/peroxygenase). In the absence of C-H substrate, LPMOs reduce O to HO (oxidase) and HO to HO (peroxidase) using proton/electron donors. This rich oxidative reactivity is promoted by a mononuclear Cu center in which some of the amino acid residues surrounding the metal might can accept and donate protons and/or electrons during O and HO reduction.

View Article and Find Full Text PDF

Synergistic Boronic Acid and Photoredox Catalysis: Synthesis of C-Branched Saccharides via Selective Alkylation of Unprotected Saccharides.

Org Lett

January 2025

Department of Chemistry and School of Pharmacy, China State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.

Here we present a regio- and stereoselective alkylation approach for unprotected saccharides using synergistic boronic acid and photoredox catalysis. Targeting the equatorial C-H bond of the -1,2-diol motif, this method employs MeB(OH) as a catalyst. Mechanistic investigations indicate that the formation of a tetracoordinate boron species, resulting from the interaction between the cyclic boronic diol ester and a free hydroxyl group in the saccharide, is critical to this transformation.

View Article and Find Full Text PDF

Efficient access to pyranoisoquinoline derivatives via rhodium-catalyzed double C-H functionalization of phenyl oxadiazoles and diazo compounds has been developed. Two C-C bonds and one C-O and C-N bond formation was realized by this tandem reaction, along with the formation of two heterocycles, affording diversified pyran-fused isoquinolines in moderate to good yields with broad functional group tolerance under mild reaction conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!