NMR spectroscopy and time-resolved fluorescence anisotropy decay (TRFAD) are two of the most commonly used methods to study solute-solvent interactions. However, only a few studies have been reported to date using a combined NMR and TRFAD approach to systematically investigate the overall picture of diffusional and rotational dynamics of both the solute and solvent. In this paper, we combined NMR and TRFAD to probe fluorescent rhodamine dye in a pyrrolidinium-based room temperature ionic liquid (RTIL), an emergent environmentally friendly solvent type used in several energy-related applications. A specific interaction of the R6G cation and [Tf2N] anion was identified, resulting in near-stick boundary condition rotation of R6G in this RTIL. The diffusional rates of the R6G solute and [C4mpyr][Tf2N] solvent derived from (1)H NMR suggest the rates are proportional to their corresponding hydrodynamic radii. The (1)H and (13)C NMR studies of self-rotational dynamics of [C4mpyr][Tf2N] showed that the self-rotational correlation time of [C4mpyr](+) is 47 ± 2 ps at 300 K. At the same temperature, we find that the correlation time for N-CH3 rotation in [C4mpyr](+) is 77 ± 2 ps, comparable to overall molecular reorientation. This slow motion is attributed to properties of the cation structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp303186v | DOI Listing |
Phys Chem Chem Phys
January 2025
Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75168, Iran.
Molecular dynamics simulations were conducted on mixtures of ionic liquids (ILs) and alcohols, specifically methanol, ethanol, and 1-propanol. Two different ILs, [Mmim][MeSO] and [Bmim][MeSO], were used with varying alcohol mole fractions to investigate the impact of alkyl chain length of cations, alcohol types, and alcohol concentrations on different structural and dynamic properties. Unique characteristics of the ILs were observed due to the varying polarity of solvents and the creation of diverse local environments surrounding the ILs.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
The adoption of carbon capture, utilization, and storage (CCUS) technology is increasingly prevalent, driven by the global initiative to conserve energy and reduce emissions. Nevertheless, CCUS has the potential to induce corrosion in equipment, particularly in high-pressure environments containing carbon dioxide (CO). Therefore, anti-corrosion protection is necessary for the metal utilized for CO production and storage equipment.
View Article and Find Full Text PDFAdv Colloid Interface Sci
January 2025
Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia.
In the evolving landscape of nanotechnology and pharmaceuticals, lipid nanostructures have emerged as pivotal areas of research due to their unique ability to mimic biological membranes and encapsulate active molecules. These nanostructures offer promising avenues for drug delivery, vaccine development, and diagnostic applications. This comprehensive review explores the complex mechanisms underlying the formation and stability of various lipid nanostructures, including lipid liquid crystalline nanoparticles and solid lipid nanoparticles.
View Article and Find Full Text PDFSoft Matter
January 2025
Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
In this work, a theoretical approach is developed to investigate the structural properties of ionic microgels induced by a circularly polarized (CP) electric field. Following a similar study on chain formation in the presence of linearly polarized fields [T. Colla , , 2018, , 4321-4337], we propose an effective potential between microgels which incorporates the field-induced interactions a static, time averaged polarizing charge at the particle surface.
View Article and Find Full Text PDFLangmuir
January 2025
Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
Understanding the arrangement of ionic liquids at the interface and their interactions with the surface is crucial for enhancing selectivity in heterogeneous reactions for practical applications. In this study, we investigate the nature of the adsorption and structural orientations of a sulfonyl-based ionic liquid on platinum-based mono- and bimetallic (111) surfaces employing replica exchange molecular dynamics and first-principles density functional theory calculations. More than 30 confirmations of the ionic liquid are identified on both monometallic and bimetallic surfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!