Purpose: To investigate how kainic acid-induced epileptiform activity is related to hemodynamic changes probed by blood oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI).

Methods: Epileptiform activity was induced with kainic acid (KA) (10 mg/kg, i.p.), and simultaneous fMRI at 7 Tesla, and deep electrode local field potential (LFP) recordings were performed from the right hippocampus in awake and medetomidine-sedated adult Wistar rats.

Key Findings: Recurrent seizure activity induced by KA was detected in LFP both in medetomidine-sedated and awake rats, even though medetomidine sedation reduced the mean duration of individual seizures as compared to awake rats (33 ± 24 and 46 ± 34 s, respectively, mean ± SD p < 0.01). KA administration also triggered robust positive BOLD responses bilaterally in the hippocampus both in awake and medetomidine-sedated rats; however, in both animal groups some of the seizures detected in LFP recording did not cause detectable BOLD signal change.

Significance: Our data suggest that medetomidine sedation can be used for simultaneous fMRI and electrophysiologic studies of normal and epileptic brain function, even though seizure duration after medetomidine administration was shorter than that in awake animals. The results also indicate that neuronal activity and BOLD response can become decoupled during recurrent kainic acid-induced seizures, which may have implications to interpretation of fMRI data obtained during prolonged epileptiform activity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1528-1167.2012.03539.xDOI Listing

Publication Analysis

Top Keywords

kainic acid-induced
12
epileptiform activity
12
local field
8
field potential
8
acid-induced seizures
8
activity induced
8
simultaneous fmri
8
hippocampus awake
8
awake medetomidine-sedated
8
detected lfp
8

Similar Publications

Activation of glutamine synthetase (GS) as a new strategy for the treatment of major depressive disorder and other GS-related diseases.

Acta Pharmacol Sin

January 2025

Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Tyrosine Peptide Multiuse Research Group, Anti-aging Bio Cell Factory Regional Leading Research Center, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.

Glutamine synthetase (GS) plays a crucial role in the homeostasis of the glutamate-glutamine cycle in the brain. Hypoactive GS causes depressive behaviors. Under chronic stress, GS has no change in expression, but its activity is decreased due to nitration of tyrosine (Tyr).

View Article and Find Full Text PDF

Evaluation of Brain Impairment Using Proton Exchange Rate MRI in a Kainic Acid-Induced Rat Model of Epilepsy.

Mol Imaging Biol

January 2025

Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.

Purpose: Proton exchange rate (K) is a valuable biophysical metric. K MRI may augment conventional structural MRI by revealing brain impairments at the molecular level. This study aimed to investigate the feasibility of K MRI in evaluating brain injuries at multiple epilepsy stages.

View Article and Find Full Text PDF

Hydrogen inhalation exerts anti-seizure effects by preventing oxidative stress and inflammation in the hippocampus in a rat model of kainic acid-induced seizures.

Neurochem Int

December 2024

School of Medicine, Fu Jen Catholic University, New Taipei City, 24205, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, 33303, Taiwan. Electronic address:

Hydrogen gas (H) is an antioxidant with demonstrated neuroprotective efficacy. In this study, we administered H via inhalation to rats to evaluate its effects on seizures induced by kainic acid (KA) injection and the underlying mechanism. The animals were intraperitoneally injected with KA (15 mg/kg) to induce seizures.

View Article and Find Full Text PDF

The effect of combined ultrasound stimulation and gastrodin on seizures in mice.

Front Neurosci

November 2024

Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Both physiotherapy and medicine play essential roles in the treatment of epilepsy. The purpose of this research was to evaluate the efficacy of the combined therapy with focus ultrasound stimulation (FUS) and gastrodin (GTD) on seizures in a mouse model. Kainic acid-induced seizure mice were divided into five groups randomly: sham, FUS, saline + sham, GTD + sham and GTD + FUS.

View Article and Find Full Text PDF

Objective: To investigate the effect of (+)-borneol on neuroinflammation and microglia phenotype polarization in epileptogenesis and its possible mechanism.

Methods: Based on mouse models of status epilepticus (SE) induced by pilocarpine, and treated with 15 mg/kg (+)-borneol, western-blot was used to detect the expressions of NeuN, Iba-1, TLR4, p65 and p-p65 in the hippocampus. Immunofluorescence was used to detect the expression of apoptosis-related proteins Bax and Bcl-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!