Papulonodular mucinosis (PM) is a cutaneous clue to the presence and activity of silent lupus erythematosus (LE), but the exact pathogenesis is still under secret. Moreover, the currently available treatments for PM are not satisfactory. To demonstrate the possibility of multiphoton microscopy (MPM) to trace the pathological state of PM and evaluate the treatment efficacy, epidermal and dermal alteration in skin lesion with PM before and after treatment was examined using MPM. Microstructure of epidermis as well as content and distribution of collagen and elastin in dermis were quantified to characterize the pathological states of PM. The results showed significant morphological difference between skin lesion before and after treatment, indicating the possibility of MPM to assess the therapeutic efficacy. With the advancement on MPM miniaturization and enhancement of contrast and depth of imaging, the MPM technique can be applied in in vivo tracking PM formation and progression, and leading the better understanding the PM pathogenesis and mechanism of response to any treatment, helping to establish novel effective therapies for PM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/sca.21031 | DOI Listing |
J Orthop Surg Res
January 2025
Department of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Tanta University, Tanta, Egypt.
Background: The palmar aponeurosis is extremely adherent to the skin above it. Many of the pre-tendinous coarse fibers enter the dermis at an angle, not just in the palmar creases but also throughout the palm. It's difficult to distinguish whether Dupuytren's illness starts in the skin's dermis or the palmar aponeurosis since the skin adheres so closely to the palmar fascia.
View Article and Find Full Text PDFPharmaceutics
December 2024
VitroScreen s.r.l., In Vitro Innovation Center, Via Mosè Bianchi 103, 20149 Milan, MI, Italy.
Skin wound healing is a physiological process orchestrated by epithelial and mesenchymal cells able to restore tissue continuity by re-organizing themselves and the ECM. This research study aimed to develop an optimized in vitro experimental model of full-thickness skin, to address molecular and morphological modifications occurring in the re-epithelization and wound healing process. Wound healing starting events were investigated within an experimental window of 8 days at the molecular level by gene expression and immunofluorescence of key epidermal and dermal biomarkers.
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil.
Background: Photodynamic therapy (PDT) is a treatment modality that uses light to activate a photosensitizing agent, destroying target cells. The growing awareness of the necessity to reduce or eliminate the use of mammals in research has prompted the search for safer toxicity testing models aligned with the new global guidelines and compliant with the relevant regulations.
Objective: The objective of this study was to assess the impact of PDT on alternative models to mammals, including in vitro three-dimensional (3D) cultures and in vivo, in invertebrate animals, utilizing a potent photosensitizer, 2-hydroxychalcone.
Bioengineering (Basel)
December 2024
Paediatric Burn Center, Children's Skin Center, Department of Surgery, University Children's Hospital Zurich, Lenggstrasse 30, 8008 Zurich, Switzerland.
For pediatric patients with full-thickness burns, achieving adequate dermal regeneration is essential to prevent inelastic scars that may hinder growth. Traditional autologous split-thickness skin grafts alone often fail to restore the dermal layer adequately. This study evaluates the long-term effect of using a NovoSorb Biodegradable Temporizing Matrix (BTM) as a dermal scaffold in four pediatric patients, promoting dermal formation before autografting.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Plastic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China.
Background: Burns and chronic ulcers may cause severe skin loss, leading to critical health issues like shock, infection, sepsis, and multiple organ failure. Effective healing of full-thickness wounds may be challenging, with traditional methods facing limitations due to tissue shortage, infection, and lack of structural support.
Methods: This study explored the combined use of gene transfection and dermal substitutes to improve wound healing.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!