Objectives: Rotary blood pumps (RBPs) running at a constant speed are routinely used for the mechanical support of the heart in various clinical applications, from short-term use in heart-lung machines to long-term support of a failing heart. Their operating range is delineated by suction and regurgitation events, leaving limited control on the cardiac workload. This study investigates whether different ratios of systolic/diastolic support are advantageous over a constant-speed operation.

Methods: In order to effectively control the load on the heart, this study aimed at developing a pulsatile control algorithm for rotary pumps to investigate the impact of pump speed modulation during systole and diastole on the left ventricle unloading. The CentriMag(TM) RBP with a modified controller was implanted in four sheep via a left thoracotomy and cannulated from the ventricular apex to the descending aorta. To modulate the pump speed synchronized with the heartbeat, custom-made real-time software detected the QRS complex of the electrocardiogram and controlled the pump speed during systole and diastole. Four different speed modulations with the same average speed but different systolic and diastolic speeds were compared with the baseline and the constant speed support. Left ventricular (LV) pressure and volume, coronary flow and pump flow were analysed to examine the influence of the pump speed modulation.

Results: Pulsatile setting reduces the cardiac workload to 64% of the baseline and 72% of the constant speed value. Maximum unloading is obtained with the highest speed during diastole and high-pulse amplitude. End-diastolic volume in the pulsatile modes varied from 85 to 94% of the baseline and 96 to 107% of the constant speed value. Consequently, the mechanical load on the heart can be adjusted to provide assuagement, which may lead to myocardial recovery. The higher pump speed during systole results in an increase in the pulse pressure up to 140% compared with the constant speed.

Conclusions: The present study is an initial step to more accurate speed modulation of RBPs to optimize the cardiac load control. To develop future control algorithms, the concept of high speed during diastole having a maximal unloading effect on the LV and high speed during systole increasing the pulse pressure is worth considering.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ejcts/ezs299DOI Listing

Publication Analysis

Top Keywords

pump speed
20
constant speed
16
speed
15
speed modulation
12
speed systole
12
rotary blood
8
cardiac workload
8
load heart
8
systole diastole
8
speed diastole
8

Similar Publications

Ultrafast Thermal Switching Enabled by Transient Polaritons.

ACS Nano

December 2024

School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Ultrafast thermal switches are pivotal for managing heat generated in advanced solid-state applications, including high-speed chiplets, thermo-optical modulators, and on-chip lasers. However, conventional phonon-based switches cannot meet the demand for picosecond-level response times, and existing near-field radiative thermal switches face challenges in efficiently modulating heat transfer across vacuum gaps. To overcome these limitations, we propose an ultrafast thermal switch design based on pump-driven transient polaritons in asymmetric terminals.

View Article and Find Full Text PDF

FDA recommends monitoring differential pressure across filter membranes during sterile filtration process validation. However, few resources are available to help pharmaceutical manufacturers anticipate expected differential pressures during sterilizing filtration of different solutions. To address this gap, Meissner evaluated differential pressures across different filtration membranes using various test solutions at increasing pump speeds.

View Article and Find Full Text PDF

Background: Cell concentration in body fluid is an important factor for clinical diagnosis. The traditional method involves clinicians manually counting cells under microscopes, which is labor-intensive. Automated cell concentration estimation can be achieved using flow cytometers; however, their high cost limits accessibility.

View Article and Find Full Text PDF

Background: The study assesses the feasibility of the DuoCor BiVAS, a novel biventricular assist system integrating magnetic levitation technology.

Methods: In an acute large animal model involving five sheep, each received the DuoCor BiVAS without cardiopulmonary bypass. Hemodynamic and device parameters were monitored continuously for 1-h post-implantation.

View Article and Find Full Text PDF

Optical logic gates based on nonlinear optical property of material with ultrafast response speed and excellent computational processing power can break the performance bottleneck of electronic transistors. As one of the layered 2D materials, TaNiS exhibits high anisotropic mobility, exotic electrical response, and intriguing optical properties. Due to the low-symmetrical crystal structures, it possesses in-plane anisotropic physical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!