We present a methodology for integrative multiscale analysis to highlight hierarchical properties of cellular protrusion and mechanochemical interactions in cellular protrusion based on live cell imaging data with high spatiotemporal resolution. As an appropriate experimental system, we selected non-polarized full-moon-shaped keratocytes that present balanced protrusion around the entire cell periphery at the cellular scale simultaneously with active protrusion and retraction at the subcellular scale. We achieved the observation of a whole cell with sub-micrometer spatial precision and sub-second time resolution for three minutes or more. The multiscale characteristics of cell peripheral activity and those of the cell peripheral shape were extracted from an identical image sequence by estimating the cell protrusion rates and the cell peripheral curvatures at various differential intervals. The spatiotemporal maps of the cell protrusion rates demonstrated a spatiotemporally nested structure of travelling waves of active protruding regions at the cellular and subcellular scales. Moreover, correlation analysis demonstrated the relationship between the cell protrusion rate and peripheral curvature at the subcellular scale. The novel integrative methodology presented here well highlighted the hierarchical properties of organized cellular protrusion, and further provided insight about the underlying mechanochemical interactions between the cell membrane and the actin filaments under the membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2ib20013a | DOI Listing |
Science
January 2025
Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany.
Elucidating the interaction between membrane proteins and antibodies requires whole-cell imaging at high spatiotemporal resolution. Lattice light-sheet (LLS) microscopy offers fast volumetric imaging but suffers from limited spatial resolution. DNA-based point accumulation for imaging in nanoscale topography (DNA-PAINT) achieves molecular resolution but is restricted to two-dimensional imaging owing to long acquisition times.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America.
Failure of central nervous system (CNS) axons to regenerate after injury results in permanent disability. Several molecular neuro-protective and neuro-regenerative strategies have been proposed as potential treatments but do not provide the directional cues needed to direct target-specific axon regeneration. Here, we demonstrate that applying an external guidance cue in the form of electric field stimulation to adult rats after optic nerve crush injury was effective at directing long-distance, target-specific retinal ganglion cell (RGC) axon regeneration to native targets in the diencephalon.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Neuroscience, Center for Learning and Memory, Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, TX 78712.
While traditionally studied for their proapoptotic functions in activating the caspase, research suggests BH3-only proteins also have other roles such as mitochondrial dynamics regulation. Here, we find that EGL-1, the BH3-only protein in , promotes the cell-autonomous production of exophers in adult neurons. Exophers are large, micron-scale vesicles that are ejected from the cell and contain cellular components such as mitochondria.
View Article and Find Full Text PDFArch Microbiol
January 2025
Department of Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, PR China.
Vibrio parahaemolyticus propels itself through liquids using a polar flagellum and efficiently swarms across surfaces or viscous environments with the aid of lateral flagella. H-NS plays a negative role in the swarming motility of V. parahaemolyticus by directly repressing the transcription of the lateral flagellin gene lafA.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Laboratory of Clinical Investigation, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA.
Background: Neurite degeneration is increasingly suspected to represent a causal feature of mild cognitive impairment (MCI) and Alzheimer's disease (AD). Therefore, sensitive and specific imaging biomarkers of neuronal degeneration are needed to elucidate the mechanisms underlying cognitive impairment in MCI and AD. However, the recently developed Neurite Orientation Dispersion and Density Imaging (NODDI) MRI technique, used to measure the neurite density index (NDI), has some limitations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!