Activity measurements in human tissues of the methotrexate molecular target: a novel fluorometric assay.

Cancer Biochem Biophys

Laboratoire de Physique Pharmaceutique, Marseille, France.

Published: July 1990

As DHFR is the main molecular target of MTX, a widely used anticancer drug, its level in human tissues is likely to be one of the factors determining tissue sensitivity towards this drug. Forty-one biopsies were analyzed for their DHFR activity by a convenient spectrofluorometric assay developed in our laboratory; this sensitive method proved to be suitable for measurements in very small human samples. Statistical analysis of the results showed that (i) DHFR activity is not an index of tumorogenicity, at least in the cases studied, (ii) tumorous extracts contain modulators of DHFR activity.

Download full-text PDF

Source

Publication Analysis

Top Keywords

dhfr activity
12
human tissues
8
molecular target
8
activity
4
activity measurements
4
measurements human
4
tissues methotrexate
4
methotrexate molecular
4
target novel
4
novel fluorometric
4

Similar Publications

Chinese hamster ovary (CHO) cells represent the most common host system for the expression of high-quality recombinant proteins. The development of stable CHO cell lines used in industrial recombinant protein production often relies on dihydrofolate reductase (DHFR) and glutamine synthetase (GS) amplification systems. Conventional approaches to develop stable cell lines lead to heterogeneous cell populations.

View Article and Find Full Text PDF

Structure and catalytic activity of a dihydrofolate reductase-like enzyme from Leptospira interrogans.

Int J Biol Macromol

January 2025

Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:

A dihydrofolate reductase (DHFR)-like enzyme from Leptospira interrogans (LiDHFRL) was cloned and the recombinant protein was characterized. Sequence alignment suggested that the enzyme lacked the conserved catalytic residues found in DHFR. Indeed, LiDHFRL did not catalyze the reduction of dihydrofolate by either NADH or NADPH.

View Article and Find Full Text PDF

In this present work, we describe the syntheses of a new series of 32 1H-indole-based-meldrum linked 1H-1,2,3-triazole derivatives (2-13, 15a-15f, 16a-16f, 17a-17f and 19a, 19b, 20a), which constitute a new class of 1H-1,2,3-triazoles. Compounds 15a-15f, 16a-16f, 17a-17f have been prepared by employing "click" reactions between substituted 1H-indole-based meldrum alkynes (11, 12 and 13) and substituted aromatic azides (14a-14f) in the presence of copper iodide (CuI) and Hünig's base. Then, the synthesis of compounds 19, 20 through decomposition of meldrum moiety.

View Article and Find Full Text PDF

Background: Schott and Hook.f. are two commonly found vegetable species of the genus , found mainly in the Asian region.

View Article and Find Full Text PDF

Molecular modeling, synthesis and biological evaluation of caffeic acid based Dihydrofolate reductase inhibitors.

BMC Chem

December 2024

Laboratory of Preservation Technology and Enzyme Inhibition Studies, Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India.

Dihydrofolate reductase (DHFR) is an enzyme that plays a crucial role in folate metabolism, which is essential for cell growth and division. DHFR has been identified as a molecular target for numerous diseases due to its significance in various biological processes. DHFR inhibitors can disrupt folate metabolism by inhibiting DHFR, leading to the inhibition of cell growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!