Design of new antitumor Pt drugs is currently also focused on those new Pt complexes which form on DNA major adducts that can hardly be removed by DNA repair systems. An attempt of this kind has already been done by designing and synthesizing new antitumor azolato-bridged dinuclear Pt(II) complexes, such as [{cis-Pt(NH(3))(2)}(2)(μ-OH)(μ-pyrazolate)](2+) (AMPZ). This new Pt(II) complex exhibits markedly higher toxic effects in some tumor cell lines than conventional mononuclear cisplatin. The primary objective in the present study was to further delineate differences in the interactions of AMPZ and cisplatin with natural, high-molecular-mass DNA using a combination of biochemical and molecular biophysics techniques. The results demonstrate for the first time that little conformational distortions induced by AMPZ in highly polymeric DNA with a random nucleotide sequence represent a structural motif recognizable by DNA repair systems less efficiently than distortions induced by cisplatin. Thus, DNA adducts of azolato-bridged dinuclear Pt(II) complexes can escape repair mechanisms more easily than those of cisplatin, which may potentiate antitumor effects of these new metallodrugs in cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2012.04.015 | DOI Listing |
Inorg Chem
November 2024
Laboratory of Biochemistry, Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Saitama 337-8570, Japan.
Prostate cancer is an androgen-dependent malignancy that presents a marked treatment challenge, particularly after progression to the castration-resistant stage. Traditional treatments such as androgen deprivation therapy often lead to resistance, necessitating novel therapeutic approaches. Previous studies have indicated that some of the azolato-bridged dinuclear platinum(II) complexes (general formula: [{-Pt(NH)}(μ-OH)(μ-azolato)]X, where azolato = pyrazolato, 1,2,3-triazolato, or tetrazolato and X = nitrate or perchlorate) inhibit androgen receptor (AR) signaling.
View Article and Find Full Text PDFBiometals
December 2016
Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Minatojima 1-1-3, Chuo-ku, Kobe, 650-8586, Japan.
A cationic azolato-bridged dinuclear platinum(II) complex, [{cis-Pt(NH)}(μ-OH)(μ-methyl-pyrazolate)] (4M-PzPt), was developed to overcome resistance to cisplatin (CDDP). This study aimed to assess the cytotoxicity of 4M-PzPt against a CDDP-resistant cell line, H4-II-E/CDDP, and compare the intracellular accumulation of CDDP and 4M-PzPt. H4-II-E and H4-II-E/CDDP displayed similar sensitivity to 4M-PzPt; however, the sensitivity of H4-II-E/CDDP to CDDP was approximately 19-fold lower than that of H4-II-E.
View Article and Find Full Text PDFSci Rep
April 2016
Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
Chromatin DNA must be read out for various cellular functions, and copied for the next cell division. These processes are targets of many anticancer agents. Platinum-based drugs, such as cisplatin, have been used extensively in cancer chemotherapy.
View Article and Find Full Text PDFMetallomics
May 2013
Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan.
We synthesised four tetrazolato-bridged dinuclear Pt(ii) complexes, [{cis-Pt(NH3)2}2(μ-OH)(μ-5-R-tetrazolato-N2,N3)](n+), where R is CH3 (1), C6H5 (2), CH2COOC2H5 (3), or CH2COO(-) (4) and n = 2 (1-3) or 1 (4). Their structures were characterised by (1)H, (13)C, and (195)Pt NMR spectroscopy, mass spectrometry, and elemental analysis, and the crystal structure of 1 was determined by X-ray crystallography. The cytotoxicities of the complexes to human non-small-cell lung cancer (NSCLC) cell lines sensitive and resistant to cisplatin were assayed.
View Article and Find Full Text PDFJ Inorg Biochem
September 2012
Department of Biophysics, Faculty of Science, Palacky University, CZ-77146 Olomouc, Czech Republic.
Design of new antitumor Pt drugs is currently also focused on those new Pt complexes which form on DNA major adducts that can hardly be removed by DNA repair systems. An attempt of this kind has already been done by designing and synthesizing new antitumor azolato-bridged dinuclear Pt(II) complexes, such as [{cis-Pt(NH(3))(2)}(2)(μ-OH)(μ-pyrazolate)](2+) (AMPZ). This new Pt(II) complex exhibits markedly higher toxic effects in some tumor cell lines than conventional mononuclear cisplatin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!