AI Article Synopsis

  • The study investigates how the signaling of a lipid called phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] and septin proteins help Candida albicans maintain its cell wall integrity when exposed to the antifungal drug caspofungin.
  • Researchers found that specific mutants of C. albicans, which have increased levels of PI(4,5)P2 due to a lack of certain enzymes, display abnormal distribution of PI(4,5)P2 and septins across their cell surfaces.
  • The findings suggest that the Irs4-Inp51 complex and the Gin4 protein play key roles in this distribution and are crucial for the yeast's natural response to

Article Abstract

We previously showed that phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] and septin regulation play major roles in maintaining Candida albicans cell wall integrity in response to caspofungin and other stressors. Here, we establish a link between PI(4,5)P2 signaling and septin localization and demonstrate that rapid redistribution of PI(4,5)P2 and septins is part of the natural response of C. albicans to caspofungin. First, we studied caspofungin-hypersusceptible C. albicans irs4 and inp51 mutants, which have elevated PI(4,5)P2 levels due to loss of PI(4,5)P2-specific 5'-phosphatase activity. PI(4,5)P2 accumulated in discrete patches, rather than uniformly, along surfaces of mutants in yeast and filamentous morphologies, as visualized with a green fluorescent protein (GFP)-pleckstrin homology domain. The patches also contained chitin (calcofluor white staining) and cell wall protein Rbt5 (Rbt5-GFP). By transmission electron microscopy, patches corresponded to plasma membrane invaginations that incorporated cell wall material. Fluorescently tagged septins Cdc10 and Sep7 colocalized to these sites, consistent with well-described PI(4,5)P2-septin physical interactions. Based on expression patterns of cell wall damage response genes, irs4 and inp51 mutants were firmly positioned within a group of caspofungin-hypersusceptible, septin-regulatory protein kinase mutants. irs4 and inp51 were linked most closely to the gin4 mutant by expression profiling, PI(4,5)P2-septin-chitin redistribution and other phenotypes. Finally, sublethal 5-min exposure of wild-type C. albicans to caspofungin resulted in redistribution of PI(4,5)P2 and septins in a manner similar to those of irs4, inp51, and gin4 mutants. Taken together, our data suggest that the C. albicans Irs4-Inp51 5'-phosphatase complex and Gin4 function upstream of PI(4,5)P2 and septins in a pathway that helps govern responses to caspofungin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3421880PMC
http://dx.doi.org/10.1128/AAC.00112-12DOI Listing

Publication Analysis

Top Keywords

cell wall
16
irs4 inp51
16
pi45p2 septins
12
rapid redistribution
8
candida albicans
8
response caspofungin
8
redistribution pi45p2
8
albicans caspofungin
8
inp51 mutants
8
albicans
6

Similar Publications

L., a medicinal plant renowned for its pharmaceutical alkaloids, has captivated scientific interest due to its rich secondary metabolite profile. This study explores a novel approach to manipulating alkaloid biosynthesis pathways by integrating virus-induced gene silencing (VIGS) with macerozyme enzyme pretreatment.

View Article and Find Full Text PDF

Cell-laden, scaffold-based tissue engineering methods have been successfully utilized for the treatment of bone fractures. In such methods, the rate of scaffold biodegradation, transport of nutrients, and removal of cell metabolic wastes are critical fluid-dynamics factors, affecting tissue regeneration. Therefore, there is a critical need to identify the underlying material transport mechanisms associated with stem cell-driven, scaffold-based bone tissue regeneration.

View Article and Find Full Text PDF

Ca is a key nutrient for fruit quality due to its role in bonding with pectin in the cell wall, providing strength through cell-to-cell adhesion, thus increasing fruit firmness and extending post-harvest life. However, Ca accumulation is mostly limited to the initial stages of fruit development due to anatomical and physiological changes that occur as fruits develop. The objective of this study was to evaluate fruit transpiration, cuticle thickness, and pedicel vessel changes during cranberry fruit development and the effect these parameters might have on Ca translocation.

View Article and Find Full Text PDF

Background: With advancements in minimally invasive thoracic surgery techniques, such as video-assisted thoracoscopic surgery and robotic surgery, the design of vascular staplers has evolved to meet the requirements of these procedures. Consequently, newer generations of automatic staplers with improved handling and reduced size have been introduced, such as two-row staplers, which are more maneuverable and less bulky than their three-row counterparts.

Case Presentation: A 68-year-old man with lung cancer underwent a right middle and lower lobectomy due to tumor invasion into the central middle bronchial trunk, rendering the preservation of the middle lobe impossible.

View Article and Find Full Text PDF

In addressing the formidable challenge posed by methicillin-resistant Staphylococcus aureus (MRSA), this investigation elucidates a novel therapeutic paradigm by specifically targeting the virulence factor sortase A (SrtA) utilizing Tubuloside A (TnA). SrtA plays a critical role in the pathogenicity of MRSA, primarily by anchoring surface proteins to the bacterial cell wall, which is crucial for the bacterium's ability to colonize and infect host tissues. By inhibiting SrtA, TnA offers a novel and distinct strategy compared to traditional antibiotics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!