A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Human/bovine chimeric MxA-like GTPases reveal a contribution of N-terminal domains to the magnitude of anti-influenza A activity. | LitMetric

Type I interferons (IFN-α/β) provide powerful and universal innate intracellular defense mechanisms against viruses. Among the antiviral effectors induced by IFN-α/β, Mx proteins of some species appear as key components of defense against influenza A viruses. The body of work published to date suggests that to exert anti-influenza activity, an Mx protein should possess a GTP-binding site, structural bases allowing multimerisation, and a specific C-terminal GTPase effector domain (GED). Both the human MxA and bovine Mx1 proteins meet these minimal requirements, but the bovine protein is more active against influenza viruses. Here, we measured the anti-influenza activity exerted by 2 human/bovine chimeric Mx proteins. We show that substituting the bovine GED for the human one in human MxA does not affect the magnitude of anti-influenza activity. Strikingly, however, substituting the human GED for the bovine one in bovine Mx1 yields a chimeric protein with a much higher anti-influenza activity than the human protein. We conclude, in contradiction to the hypothesis currently in vogue in the literature, that the GED is not the sole determinant controlling the magnitude of the anti-influenza activity exercised by an Mx protein that can bind GTP and multimerise. Our results suggest that 1 or several motifs that remain to be discovered, located N-terminally with regard to the GED, may interact with a viral component or a cellular factor so as to alter the viral cycle. Identifying, in the N-terminal portion of bovine Mx1, the motif(s) responsible for its higher anti-influenza activity could contribute to the development of new anti-influenza molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1089/jir.2011.0106DOI Listing

Publication Analysis

Top Keywords

anti-influenza activity
28
magnitude anti-influenza
12
bovine mx1
12
human/bovine chimeric
8
anti-influenza
8
influenza viruses
8
ged human
8
human mxa
8
higher anti-influenza
8
activity
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!