Chromosomal rearrangements are relatively rare evolutionary events and can be used as markers to study karyotype evolution. This research aims to use such rearrangements to study chromosome evolution in Solanum. Chromosomal rearrangements between Solanum crops and several related wild species were investigated using tomato and potato bacterial artificial chromosomes (BACs) in a multicolour fluorescent in situ hybridization (FISH). The BACs selected are evenly distributed over seven chromosomal arms containing inversions described in previous studies. The presence/absence of these inversions among the studied Solanum species were determined and the order of the BAC-FISH signals was used to construct phylogenetic trees.Compared with earlier studies, data from this study provide support for the current grouping of species into different sections within Solanum; however, there are a few notable exceptions, such as the tree positions of S. etuberosum (closer to the tomato group than to the potato group) and S. lycopersicoides (sister to S. pennellii). These apparent contradictions might be explained by interspecific hybridization events and/or incomplete lineage sorting. This cross-species BAC painting technique provides unique information on genome organization, evolution and phylogenetic relationships in a wide variety of species. Such information is very helpful for introgressive breeding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1469-8137.2012.04195.x | DOI Listing |
Structural variations (SVs) play important roles in genetic diversity, evolution, and carcinogenesis and are, as such, important for human health. However, it remains unclear how spatial proximity of double-strand breaks (DSBs) affects the formation of SVs. To investigate if spatial proximity between two DSBs affects DNA repair, we used data from 3C experiments (Hi-C, ChIA-PET, and ChIP-seq) to identify highly interacting loci on six different chromosomes.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, INDIA. Electronic address:
Fungal hybrids arise through the interbreeding of distinct species. This hybridization process fosters increased genetic diversity and the emergence of new traits. Mechanisms driving hybridization include the loss of heterozygosity, copy number variations, and horizontal gene transfer.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover.
View Article and Find Full Text PDFPartial migration is a phenomenon where migratory and resident individuals of the same species co-exist within a population, and has been linked to both intrinsic (e.g., genetic) as well as environmental factors.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, College of Horticulture, Hebei Agricultural University, Baoding 071000, China; Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia. Electronic address:
Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of tomato wilt disease, is a soil-borne, vascular-colonizing fungal pathogen that severely impacts tomato production in most growing regions worldwide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!