Although our recent report demonstrates the essential involvement of up-regulation of a regulator of intracellular Ca(2+) concentration, type 1 inositol 1,4,5-trisphosphate receptors (IP(3) Rs-1), mediated via dopamine D1-like receptor (D1DR) stimulation in the cocaine-induced psychological dependence, the exact mechanisms of regulation of IP(3) R-1 expression by D1DRs have not yet been clarified. This study attempted to clarify these mechanisms using mouse cerebral cortical neurons. An agonist for phosphatidylinositide-linked D1DRs, SKF83959, induced dose- and time-dependently IP(3) R-1 protein up-regulation following its mRNA increase without cAMP production. U73122 (a phospholipase C inhibitor), BAPTA-AM (an intracellular calcium chelating reagent), W7 (a calmodulin inhibitor), KN-93 (a calmodulin-dependent protein kinases inhibitor), and FK506 (a calcineurin inhibitor), significantly inhibited the SKF83959-induced IP(3) R-1 up-regulation. Furthermore, immunohistochemical examinations showed that SKF83959 increased expression of both cFos and cJun in nucleus as well as enhanced translocation of both calcineurin and NFATc4 complex to nucleus from cytoplasm. In addition, SKF83959 directly recruited binding of both AP-1 and NFATc4 to IP(3) R-1 promoter region. These results indicate that D1DR activation induces IP(3) R-1 up-regulation via increased translocation of AP-1 as well as NFATc4 in Gαq protein-coupled calcium signaling transduction pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.2012.07827.x | DOI Listing |
FASEB J
September 2021
Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
Normal pregnancy is essential for human reproduction. However, BaP (benzo(a)pyrene) and its metabolite BPDE (benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide) could cause dysfunctions of human trophoblast cells and might further induce miscarriage. Yet, the underlying mechanisms remain largely unknown.
View Article and Find Full Text PDFFront Physiol
December 2019
School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
Intracellular Ca is critical for regulating airway smooth muscle (ASM) tension. A rapid rise in the intracellular Ca concentration ([Ca]) of ASM cells is crucial for modulating the intensity and length of the ASM contraction. Because this rapid increase in [Ca] largely depends on the balance between Ca released from intracellular Ca stores and extracellular Ca entry, exploring the mechanisms mediating Ca transport is critical for understanding ASM contractility and the pathogenesis of bronchial contraction disorders.
View Article and Find Full Text PDFJ Neurosci Res
April 2015
Department of Pharmacology, Kawasaki Medical School, Kurashiki, Japan.
Type 1 inositol 1,4,5-trisphosphate receptors (IP3 R-1) are among the important calcium channels regulating intracellular Ca(2+) concentration in the central nervous system. In a previous study, we showed that drugs of abuse, such as cocaine, methamphetamine, and ethanol, induced IP3 R-1 upregulation via the calcium signal transduction pathway in psychological dependence. Although nicotine, a major component in tobacco smoke, participates in psychological and/or physical dependence, it has not yet been clarified how nicotine alters IP3 R-1 expression.
View Article and Find Full Text PDFJ Neurochem
December 2014
Department of Pharmacology, Kawasaki Medical School, Kurashiki, Japan.
This study involved mice that received 4 days of ethanol (EtOH) vapor inhalation and then were assessed for type 1 inositol 1,4,5-trisphosphate receptor (IP3 Rs-1) expression and the development of EtOH-induced place preference at various time points in withdrawal. IP3 R-1 protein was found to be significantly increased in the nucleus accumbens (NAcc) of mice immediately after 4-day EtOH vapor inhalation, while it significantly reduced to the control level during the next 3 days of withdrawal from EtOH inhalation. EtOH (2 g/kg, i.
View Article and Find Full Text PDFSynapse
January 2013
Department of Pharmacology, Kawasaki Medical School, Matsushima 577, Kurashiki 701-0192, Japan.
Although Type 1 inositol 1,4,5-trisphosphate receptors (IP(3) Rs-1) are one of the major calcium channels to regulate intracellular Ca(2+) concentration, there have been few available data how their expression is modified by long-term exposure to ethanol. The present study attempted to clarify mechanisms of modification of IP(3) R-1 expression during long-term ethanol exposure by γ-aminobutyric acid (GABA)A receptors using mouse cerebral cortical neurons. Long-term exposure to ethanol induced IP(3) R-1 protein upregulation following increased expression of its mRNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!