An approach to enhance the conservation-compatibility of solar energy development.

PLoS One

The Nature Conservancy, San Francisco, California, United States of America.

Published: December 2012

The rapid pace of climate change poses a major threat to biodiversity. Utility-scale renewable energy development (>1 MW capacity) is a key strategy to reduce greenhouse gas emissions, but development of those facilities also can have adverse effects on biodiversity. Here, we examine the synergy between renewable energy generation goals and those for biodiversity conservation in the 13 M ha Mojave Desert of the southwestern USA. We integrated spatial data on biodiversity conservation value, solar energy potential, and land surface slope angle (a key determinant of development feasibility) and found there to be sufficient area to meet renewable energy goals without developing on lands of relatively high conservation value. Indeed, we found nearly 200,000 ha of lower conservation value land below the most restrictive slope angle (<1%); that area could meet the state of California's current 33% renewable energy goal 1.8 times over. We found over 740,000 ha below the highest slope angle (<5%)--an area that can meet California's renewable energy goal seven times over. Our analysis also suggests that the supply of high quality habitat on private land may be insufficient to mitigate impacts from future solar projects, so enhancing public land management may need to be considered among the options to offset such impacts. Using the approach presented here, planners could reduce development impacts on areas of higher conservation value, and so reduce trade-offs between converting to a green energy economy and conserving biodiversity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3369905PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038437PLOS

Publication Analysis

Top Keywords

renewable energy
12
solar energy
8
energy development
8
biodiversity conservation
8
slope angle
8
energy
5
approach enhance
4
enhance conservation-compatibility
4
conservation-compatibility solar
4
development
4

Similar Publications

This paper presents a systematic review that explores the latest advancements in predictive maintenance methods and cybersecurity for solar panel systems, shedding light on the advantages and challenges of the most recent developments in predictive maintenance techniques for solar plants. Numerous important research studies, reviews, and empirical studies published between 2018 and 2023 are examined. These technologies help in detecting defects, degradation, and anomalies in solar panels by facilitating early intervention and reducing the probability of inverter failures.

View Article and Find Full Text PDF

Chromium Substitution Extraction Method for Its Recovery from Chromium-Tanned Leather Waste.

Materials (Basel)

December 2024

Department of Physical Aspects of Ecoenergy, Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Generała Józefa Fiszera 14 Street, 80-231 Gdańsk, Poland.

The leather industry generates significant amounts of waste, including chromium-tanned leather waste (CTLW), which poses environmental and health hazards due to chromium's potential toxicity. Efficient management of CTLW is crucial for environmental sustainability and resource recovery. Various methods exist for chromium recovery, including physical, chemical, and biological processes, with chemical methods, particularly substitution extraction using organic acids, showing promising results.

View Article and Find Full Text PDF

Significantly Enhanced Acidic Oxygen Evolution Reaction Performance of RuO Nanoparticles by Introducing Oxygen Vacancy with Polytetrafluoroethylene.

Polymers (Basel)

December 2024

Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

The supported RuO catalysts are known for their synergistic and interfacial effects, which significantly enhance both catalytic activity and stability. However, polymer-supported RuO catalysts have received limited attention due to challenges associated with poor conductivity. In this study, we successfully synthesized the RuO-polytetrafluoroethylene (PTFE) catalyst via a facile annealing process.

View Article and Find Full Text PDF

Nanocomposites based on metal nanoparticles (MNP) prepared with mangosteen () peel extract-mediated biosynthesis of Ag/Zn have attracted considerable interest due to their potential for various practical applications. In this study, their role in developing antibacterial protection for rubber cotton gloves is investigated. The process of mangosteen-peel-extract-mediated biosynthesis produced Ag/Zn nanocomposites with respective diameters of 23.

View Article and Find Full Text PDF

Recent Progress in Polyolefin Plastic: Polyethylene and Polypropylene Transformation and Depolymerization Techniques.

Molecules

December 2024

Programa de Pós-Graduação em Ciências Aplicadas a Produtos para a Saúde, Laboratório de Inovação em Química e Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Rua Doutor Mario Vianna, 523, Santa Rosa, Niterói 24241-000, RJ, Brazil.

This paper highlights the complexity and urgency of addressing plastic pollution, drawing attention to the environmental challenges posed by improperly discarded plastics. Petroleum-based plastic polymers, with their remarkable range of physical properties, have revolutionized industries worldwide. Their versatility-from flexible to rigid and hydrophilic to hydrophobic-has fueled an ever-growing demand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!