A previously unsuspected, considerable proportion of newly synthesized polypeptides are hydrolyzed rapidly by proteasomes, possibly competing with endogenous substrates and altering proteostasis. In view of the anti-cancer effects of PIs, we set out to achieve a quantitative assessment of proteasome workload in cells hallmarked by different PI sensitivity, namely, a panel of MM cells, and in a dynamic model of plasma cell differentiation, a process that confers exquisite PI sensitivity. Our results suggest that protein synthesis is a key determinant of proteasomal proteolytic burden and PI sensitivity. In different MM cells and in differentiating plasma cells, the average proteolytic work accomplished per proteasome ranges over different orders of magnitude, an unexpected degree of variability, with increased workload invariably associated to increased PI sensitivity. The unfavorable load-versus-capacity balance found in highly PI-sensitive MM lines is accounted for by a decreased total number of immunoproteasomes/cell coupled to enhanced generation of RDPs. Moreover, indicative of cause-effect relationships, attenuating general protein synthesis by the otherwise toxic agent CHX reduces PI sensitivity in activated B and in MM cells. Our data support the view that in plasma cells protein synthesis contributes to determine PI sensitivity by saturating the proteasomal degradative capacity. Quantitating protein synthesis and proteasome workload may thus prove crucial to design novel negative proteostasis regulators against cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1189/jlb.1011497DOI Listing

Publication Analysis

Top Keywords

protein synthesis
20
plasma cells
12
proteasome workload
8
cells
7
sensitivity
6
protein
5
synthesis
5
pivotal advance
4
advance protein
4
synthesis modulates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!