Evidence for a spontaneous gapped state in ultraclean bilayer graphene.

Proc Natl Acad Sci U S A

Department of Physics and Astronomy, University of California, 900 University Avenue, Riverside, CA 92521, USA.

Published: July 2012

At the charge neutrality point, bilayer graphene (BLG) is strongly susceptible to electronic interactions and is expected to undergo a phase transition to a state with spontaneously broken symmetries. By systematically investigating a large number of single-and double-gated BLG devices, we observe a bimodal distribution of minimum conductivities at the charge neutrality point. Although σ(min) is often approximately 2-3 e(2)/h (where e is the electron charge and h is Planck's constant), it is several orders of magnitude smaller in BLG devices that have both high mobility and low extrinsic doping. The insulating state in the latter samples appears below a transition temperature T(c) of approximately 5 K and has a T = 0 energy gap of approximately 3 meV. Transitions between these different states can be tuned by adjusting disorder or carrier density.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3390874PMC
http://dx.doi.org/10.1073/pnas.1205978109DOI Listing

Publication Analysis

Top Keywords

bilayer graphene
8
charge neutrality
8
neutrality point
8
blg devices
8
evidence spontaneous
4
spontaneous gapped
4
gapped state
4
state ultraclean
4
ultraclean bilayer
4
graphene charge
4

Similar Publications

Quasiperiodic Pairing in Graphene Quasicrystals.

Nano Lett

January 2025

Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea.

We investigate the superconducting instabilities of twisted bilayer graphene quasicrystals (TBGQCs) obtained by stacking two monolayer graphene sheets with 30° relative twisting. The electronic energy spectrum of the TBGQC contains periodic energy ranges (PERs) and quasiperiodic energy ranges (QERs), where the underlying local density of states (LDOS) exhibits periodic and quasiperiodic distribution, respectively. We found that superconductivity in the PER is a simple superposition of two monolayer superconductors.

View Article and Find Full Text PDF

The intercalation of metal chlorides, and particularly iron chlorides, into graphitic carbon structures has recently received lots of attention, as it can not only protect this two-dimensional (2D) magnetic system from the effects of the environment but also substantially alter the magnetic, electronic, and optical properties of both the intercalant and host material. At the same time, intercalation can result in the formation of structural defects or defects can appear under external stimuli, which can affect materials performance. These aspects have received so far little attention in dedicated experiments.

View Article and Find Full Text PDF

Unveiling a Tunable Moiré Bandgap in Bilayer Graphene/hBN Device by Angle-Resolved Photoemission Spectroscopy.

Adv Sci (Weinh)

January 2025

School of Physical Science and Technology, ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai, 201210, P. R. China.

Over the years, great efforts have been devoted in introducing a sizable and tunable band gap in graphene for its potential application in next-generation electronic devices. The primary challenge in modulating this gap has been the absence of a direct method for observing changes of the band gap in momentum space. In this study, advanced spatial- and angle-resolved photoemission spectroscopy technique is employed to directly visualize the gap formation in bilayer graphene, modulated by both displacement fields and moiré potentials.

View Article and Find Full Text PDF

In a dilute two-dimensional electron gas, Coulomb interactions can stabilize the formation of a Wigner crystal. Although Wigner crystals are topologically trivial, it has been predicted that electrons in a partially filled band can break continuous translational symmetry and time-reversal symmetry spontaneously, resulting in a type of topological electron crystal known as an anomalous Hall crystal. Here we report signatures of a generalized version of the anomalous Hall crystal in twisted bilayer-trilayer graphene, whose formation is driven by the moiré potential.

View Article and Find Full Text PDF

The discovery of superconductivity in twisted bilayer and trilayer graphene has generated tremendous interest. The key feature of these systems is an interplay between interlayer coupling and a moiré superlattice that gives rise to low-energy flat bands with strong correlations. Flat bands can also be induced by moiré patterns in lattice-mismatched and/or twisted heterostructures of other two-dimensional materials, such as transition metal dichalcogenides (TMDs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!