Short-term plasticity of human spinal inhibitory circuits after isometric and isotonic ankle training.

Eur J Appl Physiol

Department of Physical Therapy, Graduate Center, College of Staten Island, City University of New York, 2800 Victory Blvd, Staten Island, NY 10314, USA.

Published: February 2013

The purpose of this study was to determine to what extent one session of isotonic and isometric ankle dorsi and plantar flexion training induces changes in the frequency-dependent depression of the soleus H-reflex. Further, adaptation of reciprocal Ia inhibition exerted from tibialis anterior flexor group I afferents on soleus motoneurons, and presynaptic inhibition of Ia afferent terminals induced by a conditioning afferent volley following stimulation of the antagonist nerve were established with subjects seated before and after training. The soleus H-reflexes evoked at the inter-stimulus intervals of 1, 2, 3, 5, and 8 s were normalized to the mean amplitude of the H-reflex evoked every 10 s. Conditioned H-reflexes were normalized to the associated control H-reflex evoked with subjects seated before and after training. Twenty-six subjects were randomly assigned to one or more of the 4 exercise groups. Isometric ankle dorsi flexion training decreased the reciprocal and presynaptic inhibition, while isotonic ankle dorsi flexion had no significant effects. Isotonic plantar flexion training decreased only the reciprocal inhibition, whilst isometric plantar flexion had no significant effects on the reciprocal or presynaptic inhibition. None of the training exercise protocols affected the amount of homosynaptic depression of the soleus H-reflex. Our findings support the notion that plastic changes of reciprocal and presynaptic inhibition due to exercise are transferrable to a resting state, and that homosynaptic depression remains unaltered after a single session of ankle training. Further research is needed to outline the time-course of plastic changes of spinal inhibitory mechanisms in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00421-012-2438-1DOI Listing

Publication Analysis

Top Keywords

presynaptic inhibition
16
ankle dorsi
12
plantar flexion
12
flexion training
12
reciprocal presynaptic
12
spinal inhibitory
8
isotonic ankle
8
training
8
ankle training
8
isometric ankle
8

Similar Publications

Neuronal processing of external sensory input is shaped by internally generated top-down information. In the neocortex, top-down projections primarily target layer 1, which contains NDNF (neuron-derived neurotrophic factor)-expressing interneurons and the dendrites of pyramidal cells. Here, we investigate the hypothesis that NDNF interneurons shape cortical computations in an unconventional, layer-specific way, by exerting presynaptic inhibition on synapses in layer 1 while leaving synapses in deeper layers unaffected.

View Article and Find Full Text PDF

Multiacting receptor-targeting antipsychotics and tricyclic antidepressants stimulate various neurotransmitter receptors despite the different targets of postsynaptic receptors and presynaptic reuptake transporters. Their auxiliary and adverse effects may be caused by multiple targets or the modification of the neuronal membrane. To evaluate the membrane responses to olanzapine, imipramine, desipramine, amitriptyline, lidocaine, and dibucaine, we examined the inhibition of lipid peroxidation in egg yolk phosphatidylcholine liposomes.

View Article and Find Full Text PDF

Cannabinoid receptor 1 (CB1) regulates synaptic transmission through presynaptic receptors in nerve terminals, and its physiological roles are of clinical relevance. The cellular sources and synaptic targets of CB1-expressing terminals in the human cerebral cortex are undefined. We demonstrate a variable laminar pattern of CB1-immunoreactive axons and electron microscopically show that CB1-positive GABAergic terminals make type-2 synapses innervating dendritic shafts (69%), dendritic spines (20%) and somata (11%) in neocortical layers 2-3.

View Article and Find Full Text PDF

Synaptically released zinc is a neuronal signaling system that arises from the actions of the presynaptic vesicular zinc transporter protein ZnT3. Mechanisms that regulate the actions of zinc at synapses are of great importance for many aspects of synaptic signaling in the brain. Here, we identify the astrocytic zinc transporter protein ZIP12 as a candidate mechanism that contributes to zinc clearance at cortical synapses.

View Article and Find Full Text PDF

Investigating Complexin-Membrane Interactions Using NMR and Optical Methods.

Methods Mol Biol

January 2025

Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.

Complexins are a family of small presynaptic proteins that regulate neurotransmitter release at nerve terminals and are highly conserved in evolution. While direct interactions with SNARE proteins are critical for all complexin functions, binding of their disordered C-terminal domains (CTD) to membranes, especially to synaptic vesicle membranes, is essential for the ability of complexin to inhibit vesicle release. Furthermore, while some complexin CTDs possess an endogenous affinity for membranes, other complexin isoforms are subject to lipidation at their C-termini, which is presumed to confer additional membrane binding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!