Despite FDA suspension of Elan's AN-1792 amyloid beta (Aβ) vaccine in phase IIb clinical trials, the implications of this study are the guiding principles for contemporary anti-Aβ immunotherapy against Alzheimer's disease (AD). AN-1792 showed promising results with regards to Aβ clearance and cognitive function improvement, but also exhibited an increased risk of Th1 mediated meningoencephalitis. As such, vaccine development has continued with an emphasis on eliciting a notable anti-Aβ antibody titer, while avoiding the unwanted Th1 pro-inflammatory response. Previously, we published the first report of an Aβ sensitized dendritic cell vaccine as a therapeutic treatment for AD in BALB/c mice. Our vaccine elicited an anti-Aβ titer, with indications that a Th1 response was not present. This study is the first to investigate the efficacy and safety of our dendritic cell vaccine for the prevention of AD in transgenic mouse models (PDAPP) for AD. We also used Immunohistochemistry to characterize the involvement of LXR, ABCA1, and CD45 in order to gain insight into the potential mechanisms through which this vaccine may provide benefit. The results indicate that (1) the use of mutant Aβ1-42 sensitized dendritic cell vaccine results in durable antibody production, (2) the vaccine provides significant benefits with regards to cognitive function without the global (Th1) inflammation seen in prior Aβ vaccines, (3) histological studies showed an overall decrease in Aβ burden, with an increase in LXR, ABCA1, and CD45, and (4) the beneficial results of our DC vaccine may be due to the LXR/ABCA1 pathway. In the future, mutant Aβ sensitized dendritic cell vaccines could be an efficacious and safe method for the prevention or treatment of AD that circumvents problems associated with traditional anti-Aβ vaccines.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11481-012-9371-2DOI Listing

Publication Analysis

Top Keywords

sensitized dendritic
16
dendritic cell
16
cell vaccine
12
vaccine
10
cognitive function
8
aβ sensitized
8
lxr abca1
8
abca1 cd45
8
6
dendritic
5

Similar Publications

Chronic itch which is primarily associated with dermatologic, systemic, or metabolic disorders is often refractory to most current antipruritic medications, thus highlighting the need for improved therapies. Oxidative damage is a novel determinant of spinal pruriceptive sensitization and synaptic plasticity. The resolution of oxidative insult by molecular hydrogen has been manifested.

View Article and Find Full Text PDF

Introduction: Sublingual immunotherapy (SLIT) is an effective and injection-free route for allergen-specific immunotherapy (AIT). Mesenchymal stromal/stem cell (MSC)-derived exosomes (Exo) has been identified as a novel delivery platform with immunomodulatory capacities. In addition, targeting agents such as aptamers (Apt) have been extensively used for specific delivery approaches such as direct delivery of allergen formulations to dendritic cells (DC) to improve the efficacy of specific immunotherapy.

View Article and Find Full Text PDF

Paraoxonase-1 Is a Pivotal Regulator Responsible for Suppressing Allergic Airway Inflammation Through Adipose Stem Cell-Derived Extracellular Vesicles.

Int J Mol Sci

November 2024

Department of Otorhinolaryngology and Biomedical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital, Busan 50612, Republic of Korea.

Although adipose stem cell (ASC)-derived extracellular vesicles (EVs) are as effective as ASCs in the suppression of Th2 cell-mediated eosinophilic inflammation, the role of identified pulmonary genes has not been well documented. Thus, we assessed the immunomodulatory effects of paraoxonase-1 (PON1) on allergic airway inflammation in a mouse model of asthma. Five-week-old female C57BL/6 mice were sensitized to ovalbumin (OVA) by intraperitoneal injection and challenged intranasally with OVA.

View Article and Find Full Text PDF

Bacteria-based biohybrids for remodeling adenosine-mediated immunosuppression to boost radiotherapy-triggered antitumor immune response.

Biomaterials

May 2025

State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China. Electronic address:

Radiotherapy (RT) can trigger immunogenic cell death (ICD) in tumor cells and release adenosine triphosphate (ATP) to activate antitumor immunity. However, the formation of immunosuppressive adenosine (ADO) mediated by ectonucleotidases including CD39 and CD73, can exacerbate the immunosuppressive effects. Herein, a radiosensitizer-based metal-organic framework (MOF) composed of bismuth (Bi) and ellagic acid (EA) was synthesized in situ on the surface of Escherichia coli Nissle 1917 (EcN) to serve as a carrier for the CD39 inhibitor sodium polyoxotungstate (POM-1).

View Article and Find Full Text PDF
Article Synopsis
  • Research on dendritic cell (DC) activation has mostly relied on animal models, highlighting the need for human-based in vitro models due to differences in DC types across species.
  • Scientists have created a full-thickness human skin tissue model with Langerhans cell (LC) and dermal dendritic cell (DDC) surrogates from human leukemia cell lines to study their activation.
  • When exposed to nickel sulfate or DNCB, the model showed significant increases in CD1a positive cells, indicating that these treatments trigger a response leading to DC migration and activation within a short time frame.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!