Two volatile thiols, 3-mercaptohexan-1-ol (3MH), and 3-mercaptohexyl-acetate (3MHA), reminiscent of grapefruit and passion fruit respectively, are critical varietal aroma compounds in Sauvignon Blanc (SB) wines. These aromatic thiols are not present in the grape juice but are synthesized and released by the yeast during alcoholic fermentation. Single deletion mutants of 67 candidate genes in a laboratory strain of Saccharomyces cerevisiae were screened using gas chromatography mass spectrometry for their thiol production after fermentation of SB grape juice. None of the deletions abolished production of the two volatile thiols. However, deletion of 17 genes caused increases or decreases in production by as much as twofold. These 17 genes, mostly related to sulfur and nitrogen metabolism in yeast, may act by altering the regulation of the pathway(s) of thiol production or altering substrate supply. Deleting subsets of these genes in a wine yeast strain gave similar results to the laboratory strain for sulfur pathway genes but showed strain differences for genes involved in nitrogen metabolism. The addition of two nitrogen sources, urea and di-ammonium phosphate, as well as two sulfur compounds, cysteine and S-ethyl-L-cysteine, increased 3MH and 3MHA concentrations in the final wines. Collectively these results suggest that sulfur and nitrogen metabolism are important in regulating the synthesis of 3MH and 3MHA during yeast fermentation of grape juice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-012-4198-6 | DOI Listing |
BMC Nephrol
January 2025
Department of Nephrology, Jinshan Hospital Affiliated to Fudan University, Shanghai, China.
Background: To explore the prevalence of hyperuricemia and its associated factors in uremic patients undergoing maintenance hemodialysis (MHD).
Methods: Two hundred two uremic patients undergoing MHD for ≥ 3 months, in Jinshan Hospital, Fudan University, were enrolled. Pre-dialysis blood samples were tested during March 1st, 2023 to April 30th, 2023.
BMC Nephrol
January 2025
Department of Intensive Care Medicine, No. 971st Hospital of the People's Liberation Army Navy, Qingdao, Shandong Province, PR China.
Background: Ursodeoxycholic acid (UDCA), traditionally recognized for its hepatoprotective effects, has also shown potential in protecting kidney injury. This study aimed to evaluate the protective effects of UDCA against sepsis-induced acute kidney injury (AKI) and to elucidate the underlying mechanisms.
Methods: Sixty male C57BL/6 N mice were utilized to establish a sepsis-induced AKI model through intravenous injection of lipopolysaccharides (LPS, 10 mg/kg).
BMC Plant Biol
January 2025
Grassland Station of Guoluo Prefecture of Qinghai Province, Dawu, Qinghai, 814000, China.
The Qinghai-Tibetan Plateau (QTP), one of the most important ecological regions in the world, is experiencing a decline in ecological function as a result of severe grassland degradation. Elymus nutans is one of the ecological grass species for restoring degraded grasslands in QTP. The seed yield and seed quality are often limited by soil nutrients in QTP, so it is very important to optimize the application rates of fertilizer for E.
View Article and Find Full Text PDFSci Rep
January 2025
Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria.
Methanogenic archaea (methanogens) possess fascinating metabolic characteristics, such as the ability to fix molecular nitrogen (N). Methanogens are of biotechnological importance due to the ability to produce methane (CH) from molecular hydrogen (H) and carbon dioxide (CO) and to excrete proteinogenic amino acids. This study focuses on analyzing the link between biological methanogenesis and amino acid excretion under N-fixing conditions.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
Heterotrophic denitrifiers play crucial roles in global carbon and nitrogen cycling. However, their inability to oxidize sulfide renders them vulnerable to this toxic molecule, which inhibits the key enzymatic reaction responsible for reducing nitrous oxide (NO), thereby raising greenhouse gas emissions. Here, we applied microcosm incubations, community-isotope-corrected DNA stable-isotope probing, and metagenomics to characterize a cohort of heterotrophic denitrifiers in estuarine sediments that thrive by coupling sulfur oxidation with denitrification through chemolithoheterotrophic metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!