Molecular aspects of implantation failure.

Biochim Biophys Acta

Department of Reproductive Medicine and Gynaecology, University Medical Centre Utrecht, Utrecht, The Netherlands.

Published: December 2012

Despite expanding global experience with advanced reproductive technologies, the majority of IVF attempts do not result in a successful pregnancy, foremost as a result of implantation failure. The process of embryo implantation, a remarkably dynamic and precisely controlled molecular and cellular event, appears inefficient in humans and is poorly understood. However, insights gained from clinical implantation failure, early pregnancy loss, and emerging techologies that enable molecular interrogation of endometrial-embryo interactions are unravelling this major limiting step in human reproduction. We review current molecular concepts thought to underlie implantation failure, consider the contribution of embryonic and endometrial factors, and discuss the clinical value of putative markers of impaired endometrial receptivity. Finally we highlight the nature of the dialogue between the maternal endometrium and the implanting embryo and discuss the concept of natural embryo selection. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2012.05.017DOI Listing

Publication Analysis

Top Keywords

implantation failure
16
molecular
5
implantation
5
failure
5
molecular aspects
4
aspects implantation
4
failure despite
4
despite expanding
4
expanding global
4
global experience
4

Similar Publications

Background: Recent studies revealed an association between small kidney volume and progression of kidney dysfunction in particular settings such as kidney transplantation and transcatheter aortic valve implantation. We hypothesized that kidney volume was associated with the incidence of kidney-related adverse outcomes such as worsening renal function (WRF) in patients with acute heart failure (AHF).

Methods: This study was a single-center retrospective cohort study.

View Article and Find Full Text PDF

Regulation of trophectoderm morphogenesis by small GTPase RHOA through HIPPO signaling-dependent and -independent mechanisms in mouse preimplantation development.

Differentiation

January 2025

Yanagimachi Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, 96813, USA. Electronic address:

The trophectoderm (TE) is the first tissue to differentiate during the preimplantation development of the mammalian embryo. It forms the outer layer of the blastocyst and is responsible for generating the blastocoel, a fluid-filled cavity whose expansion is essential for successful hatching and implantation. Here, we investigated the role of the small GTPase RHOA in the morphogenesis of the TE, particularly its relationship with HIPPO signaling, using mouse embryos as a model.

View Article and Find Full Text PDF

Objective: To analyze data from patient information forms (PIFs) submitted to the manufacturer of a new 3-piece inflatable penile prosthesis (IPP), the Rigicon Infla10® , to summarize interim outcomes of 250 implantations in a single center, which is the largest series in Türkiye.

Methods: A retrospective review of PIFs from 250 patients implanted with the IPP between January 2021 and December 2023 was performed to assess patient characteristics, surgical data, device durability, patient satisfaction, and rates of reoperation for any reason.

Results: The mean ± SD (range) follow-up was 21.

View Article and Find Full Text PDF

CCN5 suppresses injury-induced vascular restenosis by inhibiting smooth muscle cell proliferation and facilitating endothelial repair via thymosin β4 and Cd9 pathway.

Eur Heart J

January 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.

Background And Aims: Members of the CCN matricellular protein family are crucial in various biological processes. This study aimed to characterize vascular cell-specific effects of CCN5 on neointimal formation and its role in preventing in-stent restenosis (ISR) after percutaneous coronary intervention (PCI).

Methods: Stent-implanted porcine coronary artery RNA-seq and mouse injury-induced femoral artery neointima single-cell RNA sequencing were performed.

View Article and Find Full Text PDF

Re-sheathing failure with Navitor during transcatheter aortic valve implantation: a case report.

Eur Heart J Case Rep

January 2025

The Second Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan.

Background: Self-expanding valves used in transcatheter aortic valve implantation (TAVI) are designed to allow recapture and repositioning, facilitating optimal placement and mitigating conduction disturbances and paravalvular leakage. Here, we present a rare case in which the Navitor (Abbott Structural Heart, Santa Clara, CA, USA) could not be recaptured.

Case Summary: An 81-year-old Japanese woman with very severe aortic stenosis and a massively calcified nodule at the non-coronary cusp (NCC) underwent TAVI with a 25 mm Navitor valve.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!