Limited proteolysis of rabbit skeletal-muscle AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) with trypsin results in conversion of the enzyme into a species which over the pH range 6.5-7.1 exhibits hyperbolic kinetics at low K+ concentration even in the absence of ADP, but shows a 20% decrease in activity at saturating substrate concentration. Analysis by sedimentation-equilibrium techniques reveals the proteolysed enzyme to be homogeneous and to have a molecular mass of 222,000 Da, indicative of a trimeric structure with a subunit molecular mass of 72,000 Da, in contrast with the tetrameric structure of the native enzyme, composed of four 79,000-Da subunits. These observations suggest a role of the 7,000-Da fragment which is removed by proteolysis in the maintenance of the three-dimensional structure of the subunit that causes the enzyme at low K+ concentration to show homotropic positive co-operativity. Study of the influence of pH, isolated from that of K+, on the kinetics of AMP deaminase reveals a highly pH-dependent inhibitory effect by ATP which is completely absent at acid pH values and abruptly manifests itself just above neutrality. This phenomenon may have significance in the metabolism of exercising muscle, in connection with the pH-dependent interaction of AMP deaminase with the thick filament.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1149773PMC
http://dx.doi.org/10.1042/bj2720755DOI Listing

Publication Analysis

Top Keywords

amp deaminase
16
skeletal-muscle amp
8
highly ph-dependent
8
limited proteolysis
8
low concentration
8
molecular mass
8
structure subunit
8
amp
5
enzyme
5
regulation skeletal-muscle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!