Circular and elliptic spatial scan statistics requires the user to choose a maximum cluster size. A common value for this parameter is 50% of the underlying population. In addition to the detected primary cluster, the user may be interested in the analysis of significant secondary clusters. It can also be argued that if the true cluster is irregular, then choosing a small value for the maximum cluster size and evaluating significant secondary clusters may improve cluster detection and avoid the use of irregular cluster methods. This work explores the performance of the circular, elliptic and double scan statistics for different values of the maximum cluster size and different options for the analysis of secondary clusters. Empirical results show that for hot-spot clusters, the analysis of secondary clusters which are statistically significant do not improve the detection of the true unknown cluster, on average. There is evidence that a variable maximum cluster size improves performance. That is, the double scan statistic applies an early-stopping procedure which improves positive predictive values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.sste.2012.04.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!