The molecular mechanisms underlying structural diversity of amyloid fibrils or prion strains formed within the same primary structure is considered to be one of the most enigmatic questions in prion biology. We report here on the direct characterization of amyloid structures using a novel spectroscopic technique, hydrogen-deuterium exchange ultraviolet Raman spectroscopy. This method enables us to assess the structural differences within highly ordered cross-β-cores of two amyloid states produced within the same amino acid sequence of full-length mammalian prion protein. We found that while both amyloid states consisted of β-structures, their cross-β-cores exhibited hydrogen bonding of different strengths. Moreover, Raman spectroscopy revealed that both amyloid states displayed equally narrow crystalline-like bands, suggesting uniform structures of cross-β-cores within each state. Taken together, these data suggest that highly polymorphous fibrils can display highly uniform structures of their cross-β-core and belong to the same prion strain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3490051 | PMC |
http://dx.doi.org/10.1021/jp2122455 | DOI Listing |
ACS Nano
December 2024
Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
With reduced dimensionality and a high surface area-to-volume ratio, two-dimensional (2D) semiconductors exhibit intriguing electronic properties that are exceptionally sensitive to surrounding environments, including directly interfacing gate dielectrics. These influences are tightly correlated to their inherent behavior, making it critical to examine when extrinsic charge carriers are intentionally introduced to the channel for complementary functionality. This study explores the physical origin of the competitive transition between intrinsic and extrinsic charge carrier conduction in extrinsically -doped MoS, highlighting the central role of interactions of the channel with amorphous gate dielectrics.
View Article and Find Full Text PDFSmall Methods
December 2024
Nanosensor Research Institute, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, Republic of Korea.
The crystal phase of pseudocapacitive materials significantly influences charge storage kinetics and capacitance; yet, the underlying mechanisms remain poorly understood. This study focuses on tungsten oxide (WO), a material exhibiting multiple crystal phases with potential for energy storage. Despite extensive research on WO, the impact of different crystal structures on charge storage properties remains largely unexplored.
View Article and Find Full Text PDFJ Pharm Sci
December 2024
Process Development, Amgen Inc., Thousand Oaks, CA 91320.
Analytical technologies and methods play a pivotal role in attribute understanding and control which are essential to the rapidly evolving field of pharmaceutical development and manufacturing. These technologies are advancing quickly, where innovations often involve both new scientific approaches and novel applications of established techniques. In many cases, the lack of harmonized global regulatory expectations presents challenges for the adoption of advanced technologies.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710127, China. Electronic address:
Non-invasive glucose monitoring represents a significant advancement in diabetes management and treatment as non-painful alternatives than finger-sticks tests. After developing an integrated Raman spectral system with a 785 nm laser, this study systematically explores the application of in vivo Raman spectroscopy for quantitative, noninvasive glucose monitoring. In addition to observing characteristic glucose spectral information from a mouse model, a strong spectral correlation was also recognized with the blood glucose concentration.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China. Electronic address:
Petroleum hydrocarbon contamination, such as n-alkanes, poses a significant global threat to ecosystems and human health. Microbial remediation emerges as a promising strategy for addressing this issue through both aerobic and anaerobic processes. Notably, the majority of anaerobic hydrocarbon degraders identified to date are Gram-negative bacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!