To evaluate the biological activity of the posterior silk glands of transgenic silkworms expressing human insulin-like growth factor I (hIGF-I), we bred hIGF-I-transgenic silkworms through eight generations by continuously selecting with green fluorescence and G418. The G8 transgenic silkworms were confirmed by polymerase chain reaction and dot blotting, and their posterior silk glands were removed from the fifth instar larvae to make freeze-dried powders. Enzyme-linked immunosorbent assay results showed that the expression level of hIGF-I in the posterior silk glands of G8 transgenic silkworm is approximately 493 ng/g of freeze-dried powder. When the freeze-dried powder was administrated by gavage to diabetes mellitus (DM) mice, the blood glucose in DM mice significantly decreased (P < 0.05) in a time- and dose-dependent manner compared with that of DM mice orally administrated with distilled water and normal freeze-dried powders made of untreated silk glands. These results demonstrated that hIGF-I expressed in posterior silk glands of transgenic silkworms could reduce blood glucose by oral administration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf300794hDOI Listing

Publication Analysis

Top Keywords

silk glands
20
posterior silk
16
blood glucose
12
glands transgenic
12
transgenic silkworms
12
diabetes mellitus
8
mellitus mice
8
oral administration
8
human insulin-like
8
insulin-like growth
8

Similar Publications

Recreating Silk's Fibrillar Nanostructure by Spinning Solubilized, Undegummed Silk.

Adv Mater

January 2025

Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Pigdons Road, Geelong, VIC, 3216, Australia.

The remarkable toughness (>70 MJ m) of silkworm silk is largely attributed to its hierarchically arranged nanofibrillar nanostructure. Recreating such tough fibers through artificial spinning is often challenging, in part because degummed, dissolved silk is drastically different to the unspun native feedstock found in the spinning gland. The present work demonstrates a method to dissolve silk without degumming to produce a solution containing undegraded fibroin and sericin.

View Article and Find Full Text PDF

Protocol for the isolation of silk glands from silkworms for snRNA-seq and spatial transcriptomics.

STAR Protoc

January 2025

State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China. Electronic address:

The silk glands (SGs) of silkworms specifically synthesize silk proteins, thus strongly influencing the yield and quality of silk. Here, we present a protocol for isolating SG nuclei from silkworms and obtaining high-quality tissue slices for spatial transcriptomics. We describe steps for rearing, dissecting, and nucleus isolation.

View Article and Find Full Text PDF

Pre-assembled nanospheres in mucoadhesive microneedle patch for sustained release of triamcinolone in the treatment of oral submucous fibrosis.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University; Hunan Engineering Research Center for Oral Digital Intelligence and Personalized Medicine; Hunan 3D Printing Engineering Research Center of Oral Care; WANG Songling Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410078.

Objectives: Drug-loaded mucoadhesive silk fibroin (SF) microneedle patch can overcome the limitations of low bioavailability and significant pain associated with traditional treatment methods, such as topical application or injection of triamcinolone for oral submucous fibrosis (OSF). However, these systems release the drug too quickly, failing to meet the clinical requirements. This study aims to construct a mucoadhesive SF microneedle patch pre-assembled with silk fibroin nanospheres (SFN) and explore its ability to sustain the release of triamcinolone in the treatment of OSF.

View Article and Find Full Text PDF

Complete BmFib-L knockout reveals its indispensable role in silk fiber formation.

Int J Biol Macromol

December 2024

Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing, China. Electronic address:

Silkworm (Bombyx mori), belonging to the order Lepidoptera, is an important model insect for economic and scientific research. The capacity of the silkworm to secrete robust silk renders it a valuable economic resource, while its biological characteristics offer insights into a number of scientific disciplines. Despite the extensive research conducted to elucidate the mechanisms of silk secretion, many aspects remain unclear.

View Article and Find Full Text PDF

BmE2F1 regulates endoreplication of silk gland cells in silkworm, Bombyx mori.

Int J Biol Macromol

December 2024

State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Southwest University, Chongqing 400715, China. Electronic address:

Endoreplication is particularly important in the context of silk protein synthesis within the silk gland cells of silkworms. Our previous research indicated that the BmE2F1 enhances the silk yield of silkworm cocoons, but the underlying molecular mechanism remains elusive. In this study, we employed RNA-sequencing to dissect the transcriptional profiles of silk glands in the wild-type Dazao silkworm strain and the overexpression (OE) silkworm strain with specific overexpression of the BmE2F1 gene in silk glands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!