The use of single-walled carbon nanotubes (SWCNTs) in fabricating macroscopic devices requires addressing the challenges of nanotube individualization and organization in the desired functional architectures. Previous success in depositing bare SWCNTs from chlorosulfonic acid onto silicon oxide microporous and mesoporous nanoparticles has motivated this study of their deposition onto fused silica substrates. A facile dip-coating method is reported that produces thin homogeneous films in which the carbon nanotubes are not covered by surfactants or shortened by sonication. Photophysical, electrical, chemical, and morphological properties of these SWCNT films have been characterized. When prepared at low densities, the films exhibit near-IR photoluminescence from individualized SWCNTs, whereas when prepared at high densities the films behave as transparent conductors. Sheet resistance of 471 ohm/sq has been achieved with film transmittance of ∼ 86%.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn302092bDOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
12
single-walled carbon
8
densities films
8
films
5
films bare
4
bare single-walled
4
nanotubes superacids
4
superacids tailored
4
tailored electronic
4
electronic photoluminescence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!