Transport of fullerene nanoparticles (nC60) in saturated sand and sandy soil: controlling factors and modeling.

Environ Sci Technol

College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Wei Jin Road 94, Tianjin 300071, China.

Published: July 2012

Understanding subsurface transport of fullerene nanoparticles (nC(60)) is of critical importance for the benign use and risk management of C(60). We examined the effects of several important environmental factors on nC(60) transport in saturated porous media. Decreasing flow velocity from approximately 10 to 1 m/d had little effect on nC(60) transport in Ottawa sand (mainly pure quartz), but significantly inhibited the transport in Lula soil (a sandy, low-organic-matter soil). The difference was attributable to the smaller grain size, more irregular and rougher shape, and greater heterogeneity of Lula soil. Increasing ionic strength and switching background solution from NaCl to CaCl(2) enhanced the deposition of nC(60) in both sand and soil columns, but the effects were more significant for soil. This was likely because the clay minerals (and possibly soil organic matter) in soil responded to changes of ionic strength and species differently than quartz. Anions in the mobile phase had little effect on nC(60) transport, and fulvic acid in the mobile phase (5.0 mg/L) had a small effect in the presence of 0.5 mM Ca(2+). A two-site transport model that takes into account both the blocking-affected attachment process and straining effects can effectively model the breakthrough of nC(60).

Download full-text PDF

Source
http://dx.doi.org/10.1021/es301234mDOI Listing

Publication Analysis

Top Keywords

nc60 transport
12
transport fullerene
8
fullerene nanoparticles
8
nanoparticles nc60
8
soil
8
lula soil
8
ionic strength
8
mobile phase
8
transport
7
nc60
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!