Bubble rearrangement duration in foams near the jamming point.

Phys Rev Lett

Université Paris 6, UMR 7588 CNRS-UPMC, INSP, 4 place Jussieu, 75252 Paris cedex 05, France.

Published: May 2012

We investigate the dynamics of bubble rearrangements in coarsening foams, using a time-resolved multiple light scattering technique. We measure the average duration of such events as a function of the foam confinement pressure. Rearrangements slow down as the pressure is decreased toward the jamming point. Our results are explained by a scaling law based on the balance of pressure and Darcy flow, highlighting an analogy between wet foams with mobile interfaces and suspensions of hard grains.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.108.188301DOI Listing

Publication Analysis

Top Keywords

jamming point
8
bubble rearrangement
4
rearrangement duration
4
duration foams
4
foams jamming
4
point investigate
4
investigate dynamics
4
dynamics bubble
4
bubble rearrangements
4
rearrangements coarsening
4

Similar Publications

In a cell-free massive multiple-input multiple-output (MIMO) system without cells, it is assumed that there are smart jammers and disrupters (SJDs) that attempt to interfere with and eavesdrop on the downlink communications of legitimate users. A secure transmission scheme based on multiple intelligent reflecting surfaces (IRSs) and artificial noise (AN) is proposed. First, an access point (AP) selection strategy based on user location information is designed, which aims to determine the set of APs serving users.

View Article and Find Full Text PDF

Modern radar technology requires high-quality signals and detection performance. However, traditional frequency-modulated continuous wave (FMCW) radar often has poor anti-jamming capabilities, and the high sampling rates associated with large time-bandwidth product signals can lead to increased system hardware costs and reduced data processing efficiency. This paper constructed a composite radar waveform based on noise frequency modulation (NFM) and linear frequency modulation (LFM) signals, enhancing the signal's complexity and anti-jamming capability.

View Article and Find Full Text PDF

Comprehensive and Robust Anti-Jamming Dual-Electrode Pair Sensor.

Small

December 2024

Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China.

Capacitive flexible sensors often encounter instability caused by temperature fluctuations, electromagnetic interference, stray capacitance effects, and signal noise induced by ubiquitous vibrations. The challenge lies in achieving comprehensive anti-jamming abilities while preserving a simplistic structure and manufacturing process. To tackle this dilemma, a straightforward and effective design is utilized to achieve comprehensive and robust anti-jamming properties in capacitive sensors.

View Article and Find Full Text PDF

We study the rheology of bidisperse non-Brownian suspensions using particle-based simulation, mapping the viscosity as a function of the size ratio of the species, their relative abundance, and the overall solid content. The variation of the viscosity with applied stress exhibits shear-thickening phenomenology irrespective of composition, though the stress-dependent limiting solids fraction governing the viscosity and its divergence point are nonmonotonic in the mixing ratio. Contact force data demonstrate an asymmetric exchange in the dominant stress contribution from large-large to small-small particle contacts as the mixing ratio of the species evolves.

View Article and Find Full Text PDF

Granular hydrogels, formed by jamming microgels suspension, are promising materials for three-dimensional bioprinting applications. Despite their extensive use as support materials for embedded bioprinting, the influence of the particle's physical properties on the macroscale viscoelasticity on one hand and on the printing performance on the other hand remains unclear. Herein, we investigate the linear and nonlinear rheology of κ-carrageenan granular hydrogel through small- and large-amplitude oscillatory shear measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!