The structural and magnetic properties of deuterated herbertsmithite have been studied by means of neutron powder diffraction and magnetic susceptibility measurements in a wide range of temperatures and pressures. The experimental data demonstrate that a phase transition from the quantum-disordered spin-liquid phase to the long-range ordered antiferromagnetic phase with the Néel temperature T(N)=6 K is induced at P=2.5 GPa. The observed decrease of T(N) upon compression correlates with the anomalies in pressure behavior of Cu-O bond length and Cu-O-Cu bond angles. The reasons for the observed spin-freezing transition are discussed within the framework of the available theoretical models and the recent observation of the field-induced spin freezing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.108.187207 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!