Limits on the axial coupling constant of new light bosons.

Phys Rev Lett

ETH Zürich, Institute for Particle Physics, CH-8093 Zürich, Switzerland.

Published: May 2012

We report on a neutron particle physics experiment, which provides for the first time an upper limit on the strength of an axial coupling constant for a new light spin 1 boson in the millimeter range. Such a new boson would mediate a new force between ordinary fermions, like neutrons and protons. The experiment was set up at the cold neutron reflectometer Narziss at the Paul Scherrer Institute and uses Ramsey's technique of separated oscillating fields to search for a pseudomagnetic neutron spin precession induced by this new interaction. For the axial coupling constant g(A)(2), an upper limit of 6×10(-13) (95% C.L.) was determined for an interaction range of 1 mm.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.108.181801DOI Listing

Publication Analysis

Top Keywords

axial coupling
12
coupling constant
12
constant light
8
upper limit
8
limits axial
4
light bosons
4
bosons report
4
report neutron
4
neutron particle
4
particle physics
4

Similar Publications

The recent sea ice changes in the Northern Hemisphere (NH), necessitate elucidating the sea ice variability over the past 2.6 million years (Ma), when the Earth's glacial cycles transitioned from ∼41 to ∼100 kyr periodicity, following the Mid-Pleistocene Transition (MPT) period (0.7-1.

View Article and Find Full Text PDF

Electronic Personal Health Records (EPHRs) are potentially effective tools for improving the continuity and quality of care for migrants and refugees, and specifically for undocumented migrants (UDMs). However, little is known about the intention and preconditions of healthcare providers (HCPs) to use an EPHR for UDM in the Netherlands. Between April 2023 and June 2023, thirteen interviews, using a semi-structured topic guide, were conducted with Dutch HCPs.

View Article and Find Full Text PDF

The mechanical behavior and fracture mechanisms of deep fractured rocks under explosive dynamic loads are critical for understanding rock instability in engineering applications such as blasting operations. This study aims to investigate how the presence of pre-existing cracks and different stress states affect the mechanical properties and fracture patterns of rock-like specimens under dynamic loading conditions. We utilized a Split Hopkinson Pressure Bar (SHPB) with an active confining pressure loading device to conduct impact compression tests on rock-like specimens containing pre-existing cracks.

View Article and Find Full Text PDF

Chlorine Axial Coordination Activated Lanthanum Single Atoms for Efficient Oxygen Electroreduction with Maximum Utilization.

Adv Mater

December 2024

Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.

Currently, there are still obstacles to rationally designing the ligand fields to activate rare-earth (RE) elements with satisfactory intrinsic electrocatalytic reactivity. Herein, axial coordination strategies and nanostructure design are applied for the construction of La single atoms (La-Cl SAs/NHPC) with satisfactory oxygen reduction reaction (ORR) activity. The nontrivial LaNCl motifs configuration and the hierarchical porous carbon substrate that facilitates maximized metal atom utilization ensure high half-wave potential (0.

View Article and Find Full Text PDF

In this study, a tetradentate Schiff-base ligand (HL), synthesized by the condensation of ethylenediamine with 2-hydroxy-3-methoxy-5-methylbenzaldehyde, was reacted with either manganese salts or manganese salts in the presence of various pseudohalides in methanol. This reaction resulted in the formation of five mononuclear Mn complexes: [Mn(L)(HO)](NO)·1/2HO·1/2CHOH (), [Mn(L)(HO)](ClO)·HO (), [Mn(L)(N)(HO)]·1/3HO (), [Mn(L)(NCS)(HO)] (), and [Mn(L)(HO)](dca) () (where dca is dicyanamide ion). X-ray crystallography revealed that the Mn centers adopt a hexa-coordinate pseudo-octahedral geometry, where the equatorial plane is constructed with phenoxo oxygen and imine nitrogen atoms from the Schiff base ligand, while the axial positions are occupied by water molecules or a combination of water and pseudohalides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!