Thermal expansion data are used to study the uniaxial pressure dependence of the electronic-magnetic entropy of Ba(Fe(1-x)Co(x))2As2. Uniaxial pressure is found to be proportional to doping and, thus, also an appropriate tuning parameter in this system. Many of the features predicted to occur for a pressure-tuned quantum critical system, in which superconductivity is an emergent phase hiding the critical point, are observed. The electronic-magnetic Grüneisen parameters associated with the spin-density wave and superconducting transitions further demonstrate an intimate connection between both ordering phenomena.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.108.177004DOI Listing

Publication Analysis

Top Keywords

thermal expansion
8
grüneisen parameters
8
uniaxial pressure
8
expansion grüneisen
4
parameters bafe1-xcox2as2
4
bafe1-xcox2as2 thermodynamic
4
thermodynamic quest
4
quest quantum
4
quantum criticality
4
criticality thermal
4

Similar Publications

Multi-objective design of multi-material truss lattices utilizing graph neural networks.

Sci Rep

January 2025

Advanced Manufacturing Lab, ETH Zürich, Leonhardstrasse 21, 8092, Zurich, Switzerland.

The rapid advancements in additive manufacturing (AM) across different scales and material classes have enabled the creation of architected materials with highly tailored properties. Beyond geometric flexibility, multi-material AM further expands design possibilities by combining materials with distinct characteristics. While machine learning has recently shown great potential for the fast inverse design of lattice structures, its application has largely been limited to single-material systems.

View Article and Find Full Text PDF

This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.

View Article and Find Full Text PDF

Effects of Printing Orientation on the Tensile, Thermophysical, Smoke Density, and Toxicity Properties of Ultem 9085.

Polymers (Basel)

January 2025

Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena 3, LV-1048 Riga, Latvia.

Despite the impressive properties of additively manufactured products, their inherent anisotropy is a crucial challenge for polymeric parts made via fused filament fabrication (FFF). This study compared the tensile, thermophysical, smoke density, and toxicity characteristics of Ultem 9085 (a blend of polyetherimide and polycarbonate) for samples printed in various orientations (X, Y, and Z). The results revealed that mechanical properties, such as elastic modulus and tensile strength, significantly differed from the Z printing orientation, particularly in the X and Y printing layer orientations.

View Article and Find Full Text PDF

Starch foam has attracted significant attention as an alternative to expanded styrene (EPS) foam owing to its abundance and biodegradability. Despite these merits, its limited thermal insulation and flexibility compared to EPS have hindered its utilization in packaging. Herein, we report the effect of blending with starch/PBAT on foaming behavior and physical properties during foaming processing.

View Article and Find Full Text PDF

Effect of Gradient Transition Layer on the Cracking Behavior of Ni60B (NiCrBSi) Coatings by Laser Cladding.

Materials (Basel)

January 2025

State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China.

Laser cladding technology is an effective method for producing wear-resistant coatings on damaged substrates, improving both wear and corrosion resistance, which extends the service life of components. However, the fabrication of hard and brittle materials is highly susceptible to the problem of cracking. Using gradient transition layers is an effective strategy to mitigate the challenge of achieving crack-free laser-melted wear-resistant coatings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!