Short pulse laser interactions at intensities of 2×10(21) W cm(-2) with ultrahigh contrast (10(-15)) on submicrometer silicon nitride foils were studied experimentally by using linear and circular polarizations at normal incidence. It was observed that, as the target decreases in thickness, electron heating by the laser begins to occur for circular polarization leading to target normal sheath acceleration of contaminant ions, while at thicker targets no acceleration or electron heating is observed. For linear polarization, all targets showed exponential energy spreads with similar electron temperatures. Particle-in-cell simulations demonstrate that the heating is due to the rapid deformation of the target that occurs early in the interaction. These experiments demonstrate that finite spot size effects can severely restrict the regime suitable for radiation pressure acceleration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.108.175005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!