Background: Glutaminase is expressed in most mammalian tissues and cancer cells, but the regulation of its expression is poorly understood. An essential step to accomplish this goal is the characterization of its species- and cell-specific isoenzyme pattern of expression. Our aim was to identify and characterize transcript variants of the mammalian glutaminase Gls2 gene.
Methodology/principal Findings: We demonstrate for the first time simultaneous expression of two transcript variants from the Gls2 gene in human, rat and mouse. A combination of RT-PCR, primer-extension analysis, bioinformatics, real-time PCR, in vitro transcription and translation and immunoblot analysis was applied to investigate GLS2 transcripts in mammalian tissues. Short (LGA) and long (GAB) transcript forms were isolated in brain and liver tissue of human, rat and mouse. The short LGA transcript arises by a combination of two mechanisms of transcriptional modulation: alternative transcription initiation and alternative promoter. The LGA variant contains both the transcription start site (TSS) and the alternative promoter in the first intron of the Gls2 gene. The full human LGA transcript has two in-frame ATGs in the first exon, which are missing in orthologous rat and mouse transcripts. In vitro transcription and translation of human LGA yielded two polypeptides of the predicted size, but only the canonical full-length protein displayed catalytic activity. Relative abundance of GAB and LGA transcripts showed marked variations depending on species and tissues analyzed.
Conclusions/significance: This is the first report demonstrating expression of alternative transcripts of the mammalian Gls2 gene. Transcriptional mechanisms giving rise to GLS2 variants and isolation of novel GLS2 transcripts in human, rat and mouse are presented. Results were also confirmed at the protein level, where catalytic activity was demonstrated for the human LGA protein. Relative abundance of GAB and LGA transcripts was species- and tissue-specific providing evidence of a differential regulation of GLS2 transcripts in mammals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367983 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038380 | PLOS |
Background: Myelodysplastic syndrome (MDS) features bone marrow failure and a heightened risk of evolving into acute myeloid leukemia (AML), increasing with age and reducing overall survival. Given the unfavorable outcomes of MDS, alternative treatments are necessary. Glutamine, the most abundant amino acid in the blood, is metabolized first by the enzyme glutaminase (GLS).
View Article and Find Full Text PDFHistochem Cell Biol
November 2024
Department of Medical Cosmetology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 15, Jiefang Road, Fancheng District, Xiangyang, 441000, Hubei, China.
The pathophysiology of hypertrophic scar (HS) shares similarities with cancer. HOXC10, a gene significantly involved in cancer development, exhibits higher expression levels in HS than in normal skin (NS), suggesting its potential role in HS regulation. And the precise functions and mechanisms by which HOXC10 influences HS require further clarification.
View Article and Find Full Text PDFPhysiol Behav
October 2024
Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA. Electronic address:
Clavulanic acid (CLAV) is a component of Augmentin® that preserves antibiotic efficacy by inhibiting β-lactamase activity. It also enhances cellular glutamate uptake and is a potential CNS therapeutic. Because increased glutamate transmission in brain reward circuits facilitates methamphetamine (METH) locomotor activation and sensitization, we tested the hypothesis that CLAV inhibits acute and sensitized locomotor responses to METH in mice and investigated effects of CLAV on METH-induced changes in glutaminase, the major glutamate-producing enzyme in the brain.
View Article and Find Full Text PDFTissue Cell
August 2024
School of Basic Medicine, Chongqing Medical University, Chongqing, China. Electronic address:
CISD2 and ferroptosis participate in cancer development, but are rarely reported in ovarian cancer. This study aimed to clarify interaction between CISD2 and ferroptosis and evaluate related mechanisms. si-CISD2, wt-p53 and mut-p53 lentiviruses were transfected into SKOV-3 cells.
View Article and Find Full Text PDFTalanta
October 2024
School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China; Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!