Patients with a submicroscopic deletion at 1q43q44 present with intellectual disability (ID), microcephaly, craniofacial anomalies, seizures, limb anomalies, and corpus callosum abnormalities. However, the precise relationship between most of deleted genes and the clinical features in these patients still remains unclear. We studied 11 unrelated patients with 1q44 microdeletion. We showed that the deletions occurred de novo in all patients for whom both parents' DNA was available (10/11). All patients presented with moderate to severe ID, seizures and non-specific craniofacial anomalies. By oligoarray-based comparative genomic hybridization (aCGH) covering the 1q44 region at a high resolution, we obtained a critical deleted region containing two coding genes-HNRNPU and FAM36A-and one non-coding gene-NCRNA00201. All three genes were expressed in different normal human tissues, including in human brain, with highest expression levels in the cerebellum. Mutational screening of the HNRNPU and FAM36A genes in 191 patients with unexplained isolated ID did not reveal any deleterious mutations while the NCRNA00201 non-coding gene was not analyzed. Nine of the 11 patients did not present with microcephaly or corpus callosum abnormalities and carried a small deletion containing HNRNPU, FAM36A, and NCRNA00201 but not AKT3 and ZNF238, two centromeric genes. These results suggest that HNRNPU, FAM36A, and NCRNA00201 are not major genes for microcephaly and corpus callosum abnormalities but are good candidates for ID and seizures.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.35423DOI Listing

Publication Analysis

Top Keywords

corpus callosum
12
callosum abnormalities
12
hnrnpu fam36a
12
1q44 microdeletion
8
patients
8
intellectual disability
8
craniofacial anomalies
8
microcephaly corpus
8
fam36a ncrna00201
8
genes
6

Similar Publications

Objective: Corpus callosum (CC) damage is the most consistent and typical change in early Parkinson's disease (PD), and is associated with various PD symptoms. However, the precise relationship between CC subregions and specific PD symptoms have not been identified comprehensively. In this study, we investigated the association between specific CC subregion alterations and PD symptoms using diffusion-weighted imaging.

View Article and Find Full Text PDF

Poststroke Ipsilesional Motor Performance: Microstructural Biomarkers and Their Associations With Executive Function.

Neurorehabil Neural Repair

January 2025

Department of Rehabilitation Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

Background: Unilateral hemispheric stroke can impair the ipsilesional motor performance, which is crucial for attaining optimal functional outcomes poststroke. However, the specific brain structures contributing to ipsilesional motor performance impairment remain unclear.

Objective: To explore the link between ipsilesional motor performance and the microstructural integrity of relevant neural pathways.

View Article and Find Full Text PDF

Chronic traumatic encephalopathy (CTE) has attracted attention due to sports-related head trauma or repetitive mild traumatic brain injury (mTBI). However, the pathology of CTE remains underexplored. Reproducible and quantitative model of CTE has yet to be established.

View Article and Find Full Text PDF

Introduction: Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide. Treatments for TBI patients are limited and none has been shown to provide prolonged and long-term neuroprotective or neurorestorative effects. A growing body of evidence suggests a link between TBI-induced neuro-inflammation and neurodegenerative post-traumatic disorders.

View Article and Find Full Text PDF

We describe a set of monozygotic twins with GRIN2B-related neurodevelopmental disorder (GRIN2B-ND) who exhibited distinct clinical and imaging characteristics due to a de novo heterozygous pathogenic variant in the GRIN2B gene (c.2453T>C, p.Met818Thr).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!