Generation of plant small RNA cDNA libraries for high-throughput sequencing.

Methods Mol Biol

Division of Plant Industry, CSIRO, Canberra, ACT, Australia.

Published: November 2012

Small interfering RNAs (siRNAs) and microRNAs (miRNAs) are non-coding regulatory RNAs that play an important role in development and genome stability in plants. Conventional cloning and sequencing approaches have identified hundreds of miRNAs and a large number of siRNAs, but are no longer the best choices for identification of new miRNAs which are generally expressed at low abundance. The development of next-generation sequencing technologies has provided a powerful platform for the discovery of these small but vital RNA molecules. This chapter describes a protocol for the construction of small RNA cDNA libraries suitable for sequencing-by-synthesis (SBS) technologies, such as the Roche Genome Sequencer FLX and the Illumina Genome Analyzer platforms, which have been widely used to identify new miRNAs and other types of small RNAs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-61779-882-5_9DOI Listing

Publication Analysis

Top Keywords

small rna
8
rna cdna
8
cdna libraries
8
small
5
generation plant
4
plant small
4
libraries high-throughput
4
high-throughput sequencing
4
sequencing small
4
small interfering
4

Similar Publications

Pathological cardiac remodeling is a maladaptive response that leads to changes in the size, structure, and function of the heart. These changes occur due to an acute or chronic stress on the heart and involve a complex interplay of hemodynamic, neurohormonal and molecular factors. As a critical regulator of cell growth, protein synthesis and autophagy mechanistic target of rapamycin complex 1 (mTORC1) is an important mediator of pathological cardiac remodeling.

View Article and Find Full Text PDF

To investigate the effects of long non-coding RNA KLHL7-AS1 (LncRNA KLHL7-AS1) on the proliferation and apoptosis of nucleus pulposus cells under oxidative stress and its mechanisms. Human nucleus pulposus cells (HUM-iCell-s012) were divided into 4 groups, and unoxidized nucleus pulposus cells were transfected with an empty pcDNA vector (pcDNA-control) to serve as the blank control group. Based on previous studies on oxidative stress-induced nucleus pulposus cell senescence and preliminary experiments, oxidative stress was induced by treating nucleus pulposus cells with 400 μmol/L HO.

View Article and Find Full Text PDF

Inhibition of Neutral Sphingomyelinase-2 restrains Enterovirus 71 Infection by Autophagy.

Microb Pathog

January 2025

Department of Laboratory Medicine, Suzhou Mental Health Center, the Affiliated Guangji Hospital of Soochow University, Suzhou215137, Jiangsu, China.

Enterovirus 71 (EV-71) is a major pathogenic factor that causes hand, foot, and mouth disease in young children and infants. Given the limited treatments for EV-71 infection, discovering new host factors and understanding the mechanisms involved will aid in combating this viral infection. Neutral sphingomyelinase-2 (nSMase-2, encoded by SMPD3) is a crucial cellular cofactor in viral infection.

View Article and Find Full Text PDF

Background: Fibrosis of the connective tissue in the vaginal wall predominates in pelvic organ prolapse (POP), which is characterized by excessive fibroblast-to-myofibroblast differentiation and abnormal deposition of the extracellular matrix (ECM). Our study aimed to investigate the effect of ECM stiffness on vaginal fibroblasts and to explore the role of methyltransferase 3 (METTL3) in the development of POP.

Methods: Polyacrylamide hydrogels were applied to create an ECM microenvironment with variable stiffness to evaluate the effects of ECM stiffness on the proliferation, differentiation, and expression of ECM components in vaginal fibroblasts.

View Article and Find Full Text PDF

Background: SHEN26 (ATV014) is an oral RNA-dependent RNA polymerase (RdRp) inhibitor with potential anti-SARS-CoV-2 activity. Safety, tolerability, and pharmacokinetic characteristics were verified in a Phase I study. This phase II study aimed to verify the efficacy and safety of SHEN26 in COVID-19 patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!