Comprehensive X-ray absorption near-edge structure spectroscopy at the C, O and Li K-edges and the Mn, Fe, and P L-edges of LiMn(0.75)Fe(0.25)PO(4) nanorods-graphene has been reported in great detail. Compared to that of free standing graphene and LiMn(0.75)Fe(0.25)PO(4), the intimate interaction between the nanorods and graphene via charge redistribution has been unambiguously confirmed. This interaction not only anchors the nanorods onto the graphene but also modifies its surface chemistry, both of which afford the nanorods-graphene hybrid an ultra-high rate performance in lithium ion batteries. Such knowledge is important for the understanding of hybrid nanomaterials for lithium ion batteries and allows rational design for further improvements in performance.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2cp41012eDOI Listing

Publication Analysis

Top Keywords

lithium ion
12
ultra-high rate
8
rate performance
8
limn075fe025po4 nanorods-graphene
8
nanorods-graphene hybrid
8
nanorods graphene
8
ion batteries
8
spectroscopic understanding
4
understanding ultra-high
4
performance limn075fe025po4
4

Similar Publications

The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling.

View Article and Find Full Text PDF

Nonporous TiO@C microsphere with a highly integrated structure for high volumetric lithium storage and enhance initial coulombic efficiency.

Sci Rep

December 2024

Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang, 262700, People's Republic of China.

To enhance the volumetric energy density and initial coulombic efficiency (ICE) of titanium oxide (TiO) as anode electrode material for lithium-ion batteries (LIB), this study employed a surface-confined in-situ inter-growth mechanism to prepare a TiO embedded carbon microsphere composite. The results revealed that the composite exhibited a highly integrated structure of TiO with oxygen vacancies and carbon, along with an exceptionally small specific surface area of 11.52 m/g.

View Article and Find Full Text PDF

Nose-to-brain delivery of lithium via a sprayable in situ-forming hydrogel composed of chelating starch nanoparticles.

J Control Release

December 2024

Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada. Electronic address:

While bipolar disorder patients can benefit from lithium therapy, high levels of lithium in the serum can induce undesirable systemic side effects. Intranasal (IN) lithium delivery offers a potential solution to this challenge given its potential to facilitate improved lithium transport to brain when delivered to the olfactory mucosa. Herein, a sprayable, in situ forming nanoparticle network hydrogel (NNH) based on Schiff base interactions between chelator-functionalized oxidized starch nanoparticles (SNPs) and carboxymethyl chitosan (CMCh) is reported that can be deployed within the nasal cavity to release ultra-small penetrative SNPs over time.

View Article and Find Full Text PDF

Global concerns about pollution reduction, associated with the continuous technological development of electronic equipment raises challenge for the future regarding lithium-ion batteries exploitation, use, and recovery through recycling of critical metals. Several human and environmental issues are reported, including related diseases caused by lithium waste. Lithium in Li-ion batteries can be recovered through various methods to prevent environmental contamination, and Li can be reused as a recyclable resource.

View Article and Find Full Text PDF

Compared to traditional liquid electrolytes, solid electrolytes have received widespread attention due to their higher safety. In this work, a vinyl functionalized metal-organic framework porous material (MIL-101(Cr)-NH-Met, noted as MCN-M) is synthesized by postsynthetic modification. A novel three-dimensional hybrid gel composite solid electrolyte (GCSE-P/MCN-M) is successfully prepared via in situ gel reaction of a mixture containing multifunctional hybrid crosslinker (MCN-M), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), ethylene carbonate (EC), diethylene glycol monomethyl ether methacrylate (EGM) and polyethylene (vinylidene fluoridee) (PVDF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!