Photochemical properties of a myoglobin-CdTe quantum dot conjugate.

Chem Commun (Camb)

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.

Published: August 2012

A myoglobin-cadmium telluride quantum dot conjugate was constructed using an artificial heme modified with a thiol moiety as a linker. Irradiation of the myoglobin-cadmium telluride conjugate generated the photoreduced ferrous myoglobin via an electron transfer from the photoexcited quantum dot, leading to the formation of CO-bound myoglobin under a CO atmosphere.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2cc33046fDOI Listing

Publication Analysis

Top Keywords

quantum dot
12
dot conjugate
8
myoglobin-cadmium telluride
8
photochemical properties
4
properties myoglobin-cdte
4
myoglobin-cdte quantum
4
conjugate myoglobin-cadmium
4
telluride quantum
4
conjugate constructed
4
constructed artificial
4

Similar Publications

Cancer treatments such as surgery and chemotherapy have several limitations, including ineffectiveness against large or persistent tumors, high relapse rates, drug toxicity, and non-specificity of therapy. Researchers are exploring advanced strategies for treating this life-threatening disease to address these challenges. One promising approach is targeted drug delivery using prodrugs or surface modification with receptor-specific moieties for active or passive targeting.

View Article and Find Full Text PDF

Blue light emitted by commercial white light-emitting diodes (WLEDs) in the 440-470 nm range poses ocular health risks with prolonged exposure. Effective filtration is crucial for health-conscious lighting, but traditional filters often cause color distortion by completely removing blue emission. In this study, we address this challenge by synthesizing carbon dots (CDs) with strong absorption at 460 nm and bright cyan emission at 485 nm, featuring a photoluminescence quantum yield of 65% and a narrow full width at half-maximum of 30 nm.

View Article and Find Full Text PDF

In Situ, Treatment with Guanidinium Chloride Ligand Enables Efficient Blue Quantum Dot Light-Emitting Diodes with 23.5% External Quantum Efficiency.

Adv Mater

January 2025

National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Key Lab for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng, 475004, China.

The poor efficiency and stability of blue Quantum Dot Light-Emitting diodes (QLED) hinders the practical applications of QLEDs full-color displays. Excessive electron injection, insufficient hole injection, and abundant defects on the surface of quantum dots (QD) are the main issues limiting the performance of blue devices. Herein, an in situ treatment with bipolar small molecule polydentate ligand-guanidine chloride (GACl) is proposed to simultaneously suppress excessive electron injection, patch surface defects of QDs and enhance hole injection.

View Article and Find Full Text PDF

Direct interactions between quantum particles naturally fall off with distance. However, future quantum computing architectures are likely to require interaction mechanisms between qubits across a range of length scales. In this work, we demonstrate a coherent interaction between two semiconductor spin qubits 250 μm apart using a superconducting resonator.

View Article and Find Full Text PDF

Enhanced Spontaneous Emission Rate and Luminescence Intensity of CsPbBr Quantum Dots Using a High- Microdisk Cavity.

J Phys Chem Lett

January 2025

State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China.

Perovskite quantum dots (QDs) are high-efficiency optoelectronic materials attracting great interest, but further improvement in the luminescence efficiency is crucial for their application. In this work, we enhance both the spontaneous emission rate and the photoluminescence (PL) intensity of CsPbBr QDs by coupling them to a high quality () factor SiO microdisk cavity. Compared to conventional metal plasmonic cavities, the dielectric cavity structure suppresses the effects of quenching and energy transfer, which could introduce complex fluctuations and nonradiative decays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!