Correction of psychoemotional and autonomic disturbances in children 7-17 years old with diabetes mellitus type 1 was conducted using transcranial magnetic electro-stimulation with alternate action on brain hemispheres (main group, 42 patients). The method includes the combined action of magnetic field pulses and series of electric impulses; magnetic and electric stimulation were performed synchronously - at first, on one brain hemisphere, then on another hemisphere with alternation frequency 9.5-10.5 Hz. A comparison group consisted of 44 patients with diabetes mellitus type 1 who received physiotherapeutic treatment as a combination of transcranial magnetic therapy and electro-stimulation with simultaneous action on both brain hemispheres. Treatment duration was 10 sessions. Treatment efficacy was assessed by the decrease in frequency and intensity of complaints, improvement of patient's health status measured (a scale for assessment of activity, health perception and mood) and improvement of the status of the autonomic nervous system (Vein's questionnaire), mental sphere (the Luscher color test) and cognitive traits (The Concentrated Attention Test of the Toulouse-Pierron Factorial Battery). The status of the autonomic nervous system was evaluated before and after the treatment using cardiointervalography. Brain bioelectrical activity was assessed using encephalography. Significant reduction of autonomic, psychoemotional and cognitive disturbances, normalization of brain bioelectrical activity due to the α-rhythm organization and arrhythmia removal were identified in the main group after the treatment. No adverse effects of this physiotherapeutic treatment was found.

Download full-text PDF

Source

Publication Analysis

Top Keywords

action brain
12
brain hemispheres
12
diabetes mellitus
12
mellitus type
12
magnetic electro-stimulation
8
electro-stimulation alternate
8
alternate action
8
disturbances children
8
transcranial magnetic
8
main group
8

Similar Publications

The time course and organization of hippocampal replay.

Science

January 2025

Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA.

The mechanisms by which the brain replays neural activity sequences remain unknown. Recording from large ensembles of hippocampal place cells in freely behaving rats, we observed that replay content is strictly organized over multiple timescales and governed by self-avoidance. After movement cessation, replays avoided the animal's previous path for 3 seconds.

View Article and Find Full Text PDF
Article Synopsis
  • Synchronization in brain networks is crucial for processing information, but time delays in signal transmission can significantly influence this process, especially in more complex spiking neural networks.
  • The study involves investigating synchronization conditions and dynamics in a two-dimensional network of adaptive exponential integrate-and-fire neurons, focusing on how delay impacts this behavior.
  • Findings reveal that synchronization patterns depend on a combination of properties at different levels, including individual neuron characteristics, network connectivity, and long-range connections, which together affect the emergent activity patterns in the brain.
View Article and Find Full Text PDF

Psychological interventions may make a valuable contribution to recovery following a mild traumatic brain injury (mTBI) and have been advocated for in treatment consensus guidelines. Acceptance and Commitment Therapy (ACT) is a more recently developed therapeutic option that may offer an effective approach. Consequently, we developed ACTion mTBI, a 5-session ACT-informed intervention protocol.

View Article and Find Full Text PDF

Survivors of pediatric brain tumours are at a high risk of cognitive morbidity. Reliable individual-level predictions regarding the likelihood, degree, and affected domains of cognitive impairment would be clinically beneficial. While established risk factors exist, quantitative MRI analysis may enhance predictive value, above and beyond current clinical risk models.

View Article and Find Full Text PDF

Revised Process for ACNS Guidelines Development.

J Clin Neurophysiol

February 2025

Division of Child Neurology, Department of Neurology, Stanford University, Palo Alto, California, U.S.A.

The development of clinical practice guidelines is an evolving field. In response to the need for consistent, evidence-based medical practice, the American Clinical Neurophysiology Society identified the need to update the Society's guideline development process. The American Clinical Neurophysiology Society Guidelines Committee created an action plan with the goal of improving transparency and rigor for future guidelines and bringing existing guidelines to current standards.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!