Decorrelation of sensory-evoked neuronal responses in rat barrel cortex during postnatal development.

Neurosci Res

Laboratory for Cognitive Neuroscience, Graduate School of Engineering Science and Graduate School of Frontier Biosciences, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.

Published: August 2012

The ability to detect and discriminate sensory stimuli greatly improves with age. To better understand the neural basis of perceptual development, we studied the postnatal development of sensory responses in cortical neurons. Specifically, we analyzed neuronal responses to single-whisker deflections in the posteromedial barrel subfield (PMBSF) of the rat primary somatosensory cortex. Responses of PMBSF neurons showed a long onset latency and duration in the first postnatal week, but became fast and transient over the next few weeks. Trial-by-trial variations of single neuron responses did not change systematically with age, whereas the covariation of responses across trials between neurons (noise correlation) was high on postnatal day 5-6 (P5-6), and gradually decreased with age to near zero by P30-31. Computational analyses showed that pooled responses of multiple neurons became more reliable across stimulus trials with age. The period over which these changes occurred corresponds to the period when rats develop a full set of exploratory whisking behavior. We suggest that reduced noise correlation across a population of neurons, in addition to sharpening the temporal characteristics of single neuron responses, may help improve behavioral performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neures.2012.05.009DOI Listing

Publication Analysis

Top Keywords

responses
8
neuronal responses
8
postnatal development
8
single neuron
8
neuron responses
8
noise correlation
8
neurons
5
decorrelation sensory-evoked
4
sensory-evoked neuronal
4
responses rat
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!