Bisphenol A (BPA) is used in numerous products, such as plastic bottles and food containers, from which it frequently leaches out and is consumed by humans. There is a growing public concern that BPA exposure may pose a significant threat to human health. Moreover, due to the widespread and constant nature of BPA exposure, not only adults but fetuses and neonates are also exposed to BPA. There is mounting evidence that developmental exposures to chemicals from our environment, including BPA, contribute to diseases late in life; yet, studies of how early life exposures specifically alter the immune system are limited. Herein we report an examination of how maternal exposure to a low, environmentally relevant dose of BPA affects the immune response to infection with influenza A virus. We exposed female mice during pregnancy and through lactation to the oral reference dose for BPA listed by the US Environmental Protection Agency, and comprehensively examined immune parameters directly linked to disease outcomes in adult offspring following infection with influenza A virus. We found that developmental exposure to BPA did not compromise disease-specific adaptive immunity against virus infection, or reduce the host's ability to clear the virus from the infected lung. However, maternal exposure to BPA transiently reduced the extent of infection-associated pulmonary inflammation and anti-viral gene expression in lung tissue. From these observations, we conclude that maternal exposure to BPA slightly modulates innate immunity in adult offspring, but does not impair the anti-viral adaptive immune response, which is critical for virus clearance and survival following influenza virus infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3366985 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038448 | PLOS |
ACS Appl Mater Interfaces
January 2025
Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany.
Mucus is a complex hydrogel that acts as a defensive and protective barrier in various parts of the human body. The rise in the level of viral infections has underscored the importance of advancing research into mucus-mimicking hydrogels for the efficient design of antiviral agents. Herein, we demonstrate the gram-scale synthesis of biocompatible, lignin-based virus-binding inhibitors that reduce waste and ensure long-term availability.
View Article and Find Full Text PDFVirol J
January 2025
Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
Infection with Influenza A virus (IAV) induces severe inflammatory responses and lung injury, contributing significantly to mortality and morbidity rates. Alterations in the microbial composition of the lungs and intestinal tract resulting from infection could influence disease progression and treatment outcomes. Xiyanping (XYP) injection has demonstrated efficacy in clinical treatment across various viral infections.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
Influenza causes 100,000-710,000 hospitalizations annually in the U.S. Patients with liver disease are at higher risk of severe outcomes following influenza infection.
View Article and Find Full Text PDFMech Ageing Dev
January 2025
CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; School of Life Sciences, Henan University, Kaifeng, Henan Province, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng, Henan Province 475004, China. Electronic address:
Background: Alveolar epithelial cells (AECs) are the primary targets of many pathogens and play an important role in sensing viruses and regulating immunity. Yet, little is known about the antiviral responses in the aged AECs.
Methods: The responses of young or aged AECs after viral infection were analyzed using methods such as flow cytometry, quantitative real-time PCR, Western blot detection, and transwell chemotaxis assay.
Introduction: Interventions aimed at preventing and treating maternal infections during the gestational period are of paramount importance. Timely immunizations, screening strategies and management of maternal infections reduce the risk of complications for the developing fetus and play a pivotal role in improving neonatal outcomes.
Summary: We summarize evidence for a total of thirteen interventions, pertaining to the prevention and treatment of maternal infections during the antenatal period, from Every Newborn Series published in The Lancet 2014.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!