The ND18 strain of Barley stripe mosaic virus (BSMV) infects several lines of Brachypodium distachyon, a recently developed model system for genomics research in cereals. Among the inbred lines tested, Bd3-1 is highly resistant at 20 to 25 °C, whereas Bd21 is susceptible and infection results in an intense mosaic phenotype accompanied by high levels of replicating virus. We generated an F(6:7) recombinant inbred line (RIL) population from a cross between Bd3-1 and Bd21 and used the RILs, and an F(2) population of a second Bd21 × Bd3-1 cross to evaluate the inheritance of resistance. The results indicate that resistance segregates as expected for a single dominant gene, which we have designated Barley stripe mosaic virus resistance 1 (Bsr1). We constructed a genetic linkage map of the RIL population using SNP markers to map this gene to within 705 Kb of the distal end of the top of chromosome 3. Additional CAPS and Indel markers were used to fine map Bsr1 to a 23 Kb interval containing five putative genes. Our study demonstrates the power of using RILs to rapidly map the genetic determinants of BSMV resistance in Brachypodium. Moreover, the RILs and their associated genetic map, when combined with the complete genomic sequence of Brachypodium, provide new resources for genetic analyses of many other traits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3366947 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038333 | PLOS |
PLoS One
December 2024
College of Agriculture, Xinyang Agriculture and Forestry University, Xinyang, China.
The ATP-dependent zinc metalloprotease (FtsH) protein gene family is essential for plant growth, development, and stress responses. Although FtsH genes have been identified in various plant species, the FtsH gene family in wheat (Triticum aestivum) remains unstudied. In this study, we identified 11 TaFtsH genes with uneven chromosomal distribution, significant variations in gene sequence length, and differing intron numbers among individual members.
View Article and Find Full Text PDFFunct Integr Genomics
December 2024
Department of Biology, Debre Markos University, Debre Markos, Ethiopia.
The barley stripe mosaic virus (BSMV) uses its genomic RNA components (alpha, beta, and gamma) as an efficient method for studying gene functions. It is a newly developed method that utilizes gene transcript suppression to determine the role of plant genes. BSMV derived from virus induced gene silencing (VIGS) is capable of infecting various key farming crops like barley, wheat, rice, corn, and oats.
View Article and Find Full Text PDFPlant J
December 2024
DOE Center for Advanced Bioenergy and Bioproducts Innovation, St. Paul, Minnesota, 55108, USA.
The requirement of in vitro tissue culture for the delivery of gene editing reagents limits the application of gene editing to commercially relevant varieties of many crop species. To overcome this bottleneck, plant RNA viruses have been deployed as versatile tools for in planta delivery of recombinant RNA. Viral delivery of single-guide RNAs (sgRNAs) to transgenic plants that stably express CRISPR-associated (Cas) endonuclease has been successfully used for targeted mutagenesis in several dicotyledonous and few monocotyledonous plants.
View Article and Find Full Text PDFPlant Physiol Biochem
November 2024
Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, 193201, J&K, India; Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, 6150, Australia. Electronic address:
Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst) is the most damaging wheat disease, causing substantial losses in global wheat production and productivity.
View Article and Find Full Text PDFBMC Genomics
November 2024
College of Life Sciences, Henan Agricultural University, Zhengzhou, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!