The depression in force and/or velocity associated with muscular fatigue can be the result of a failure at any level, from the initial events in the motor cortex of the brain to the formation of an actomyosin cross-bridge in the muscle cell. Since all the force and motion generated by muscle ultimately derives from the cyclical interaction of actin and myosin, researchers have focused heavily on the impact of the accumulation of intracellular metabolites [e.g., P(i), H(+) and adenosine diphoshphate (ADP)] on the function these contractile proteins. At saturating Ca(++) levels, elevated P(i) appears to be the primary cause for the loss in maximal isometric force, while increased [H(+)] and possibly ADP act to slow unloaded shortening velocity in single muscle fibers, suggesting a causative role in muscular fatigue. However the precise mechanisms through which these metabolites might affect the individual function of the contractile proteins remain unclear because intact muscle is a highly complex structure. To simplify problem isolated actin and myosin have been studied in the in vitro motility assay and more recently the single molecule laser trap assay with the findings showing that both P(i) and H(+) alter single actomyosin function in unique ways. In addition to these new insights, we are also gaining important information about the roles played by the muscle regulatory proteins troponin (Tn) and tropomyosin (Tm) in the fatigue process. In vitro studies, suggest that both the acidosis and elevated levels of P(i) can inhibit velocity and force at sub-saturating levels of Ca(++) in the presence of Tn and Tm and that this inhibition can be greater than that observed in the absence of regulation. To understand the molecular basis of the role of regulatory proteins in the fatigue process researchers are taking advantage of modern molecular biological techniques to manipulate the structure and function of Tn/Tm. These efforts are beginning to reveal the relevant structures and how their functions might be altered during fatigue. Thus, it is a very exciting time to study muscle fatigue because the technological advances occurring in the fields of biophysics and molecular biology are providing researchers with the ability to directly test long held hypotheses and consequently reshaping our understanding of this age-old question.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3365633 | PMC |
http://dx.doi.org/10.3389/fphys.2012.00151 | DOI Listing |
Alterations in energy metabolism may drive fatigue in older age, but prior research primarily focused on skeletal muscle energetics without assessing other systems, and utilized self-reported measures of fatigue. We tested the association between energy metabolism in the brain and an objective measure of fatigability in the Study of Muscle, Mobility and Aging (N=119, age 76.8±4.
View Article and Find Full Text PDFBMC Rheumatol
January 2025
Department of Rheumatology, Overton Brooks VA Medical Center, Shreveport, LA, USA.
Background: Dermatomyositis is a chronic inflammatory condition affecting muscles and skin, often associated with an increased risk of cancer. Specific autoantibodies, including anti-TIF1 (Transcription Intermediary Factor 1), have been linked to this risk. We present a case of dermatomyositis in a male patient positive for anti-TIF1 antibodies, subsequently diagnosed with squamous cell carcinoma of the tonsil, a novel association not previously documented.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chinese Osteo-traumatology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China. Electronic address:
Fatigue is a pathological state that can impair physical and cognitive performance, making the development of effective therapeutic strategies crucial. In this study, an acid polysaccharide (MHa) was isolated from Mentha haplocalyx. Structural analysis showed that MHa (40.
View Article and Find Full Text PDFMult Scler Relat Disord
January 2025
Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic; Department of Rehabilitation Medicine, First Faculty of Medicine and General University Hospital in Prague, Czech Republic. Electronic address:
Background: Back pain is a common but often underestimated symptom of patients with MS that can negatively influence their quality of life. However there are only limited number of studies comparing the effect of different types of exercise and use of telerehabilitation on back pain in MS. Therefore, the aim of the study is to compare whether telerehabilitation alone is as effective as conventional outpatient physiotherapy followed by online exercise.
View Article and Find Full Text PDFNutrients
January 2025
Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China.
Objectives: This study aimed to clarify the effect of lactic acid bacteria-fermented corn protein hydrolysate (FCH) on fatigue in mice and explore the connection between fatigue-related indicators and intestinal microbial flora.
Methods: The fatigue model of mice was constructed by exercise endurance experiment. The anti-fatigue level of FCH was evaluated by measuring physiological and biochemical indexes in mouse serum, liver and skeletal muscle.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!