An E-cadherin-mediated hitchhiking mechanism for C. elegans germ cell internalization during gastrulation.

Development

Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA.

Published: July 2012

Gastrulation movements place endodermal precursors, mesodermal precursors and primordial germ cells (PGCs) into the interior of the embryo. Somatic cell gastrulation movements are regulated by transcription factors that also control cell fate, coupling cell identity and position. By contrast, PGCs in many species are transcriptionally quiescent, suggesting that they might use alternative gastrulation strategies. Here, we show that C. elegans PGCs internalize by attaching to internal endodermal cells, which undergo morphogenetic movements that pull the PGCs into the embryo. We show that PGCs enrich HMR-1/E-cadherin at their surfaces to stick to endoderm. HMR-1 expression in PGCs is necessary and sufficient to ensure internalization, suggesting that HMR-1 can promote PGC-endoderm adhesion through a mechanism other than homotypic trans interactions between the two cell groups. Finally, we demonstrate that the hmr-1 3' untranslated region promotes increased HMR-1 translation in PGCs. Our findings reveal that quiescent PGCs employ a post-transcriptionally regulated hitchhiking mechanism to internalize during gastrulation, and demonstrate a morphogenetic role for the conserved association of PGCs with the endoderm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383229PMC
http://dx.doi.org/10.1242/dev.079863DOI Listing

Publication Analysis

Top Keywords

pgcs
9
hitchhiking mechanism
8
gastrulation movements
8
cell
5
gastrulation
5
e-cadherin-mediated hitchhiking
4
mechanism elegans
4
elegans germ
4
germ cell
4
cell internalization
4

Similar Publications

Primordial germ cells (PGCs), the progenitors of gametes, are essential for teleost reproduction. While their formation is conserved across teleosts, the activation, migration routes, and localization periods vary among species. In this study, we developed a novel transgenic line, Tg(ddx4:TcCFP13-nanos3), based on the Nile tilapia genome, to label PGCs with clear fluorescent signals in the freshwater angelfish (Pterophyllum scalare).

View Article and Find Full Text PDF

Artificially induced haploidy is lethal in vertebrates, although it is useful for genetic screening and genome editing due to its single set of genomes. Haploid embryonic stem (ES) cell lines in mammals contribute to genetic studies and the production of gametes derived from haploid ES cells. In fish breeding, doubled haploids (DHs) induced by artificially induced gynogenesis are used to generate isogenic gametes for cloning purposes.

View Article and Find Full Text PDF

Estrogenic-like compounds severely disturb germ cell formation in Japanese quail.

Biochem Biophys Res Commun

December 2024

Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan.

During avian germ cell formation, primordial germ cells (PGCs) differentiate into prospermatogonia in testicular seminiferous tubules or into oogonia in the ovarian cortex in late-stage embryos. Although estrogenic endocrine-disrupting chemicals (EDCs) have been suggested to affect the differential fate of avian germ cells, there is currently no established method to examine the effects of EDCs on the differentiation potential of germline cells due to large amount of unidentified proteins present in avian germ cells. Regarding reliable molecular probes for the detection of germ cells that differentiated from the PGCs of Japanese quail, the prospermatogonium and oogonium, respectively, integrin beta1 (ITGB1), insulin-like growth factor 2-binding protein 1 (IGF2BP1), and stimulated by retinoic acid 8 (STRA8) were identified as marker proteins by RNA-seq and liquid chromatography tandem mass spectrometry analyses.

View Article and Find Full Text PDF

GPI transamidase complex is required for primordial germ cell migration and development in zebrafish.

J Mol Cell Biol

December 2024

Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.

Proteins without transmembrane domains could be anchored to the cell surface for regulating various biological processes when covalently linked to glycosylphosphatidylinositol (GPI) molecules by the GPI transamidase (GPIT) complex. However, it remains poorly understood whether and how the GPIT complex affects primordial germ cell (PGC) development. In this study, we report the important roles of GPI transamidase in PGC migration and development in zebrafish embryos.

View Article and Find Full Text PDF

The faithful production of primordial germ cells (PGCs) in vitro opens a wide range of novel applications in reproductive biology and medicine. However, the reproducibility of PGCs culture conditions across different laboratories or breeds remains a challenge. Therefore, it is necessary to research the molecular dynamics that lead to the gradual establishment of cultured PGCs lines network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!