Prostaglandin H synthase exerts not only cyclooxygenase activity but also peroxidase activity. The latter activity of the enzyme is thought to couple with oxidation of dopamine to dopamine quinone. Therefore, it has been proposed that cyclooxygenase inhibitors could suppress dopamine quinone formation. In the present study, we examined effects of various cyclooxygenase inhibitors against excess methyl L-3,4-dihydroxyphenylalanine (L-DOPA)-induced quinoprotein (protein-bound quinone) formation and neurotoxicity using dopaminergic CATH.a cells. The treatment with aspirin inhibited excess methyl L-DOPA-induced quinoprotein formation and cell death. However, acetaminophen did not show protective effects, and indomethacin and meloxicam rather aggravated these methyl L-DOPA-induced changes. Aspirin and indomethacin did not affect the level of glutathione that exerts quenching dopamine quinone in dopaminergic cells. In contrast with inhibiting effects of higher dose in the previous reports, relatively lower dose of aspirin that affected methyl L-DOPA-induced quinoprotein formation and cell death failed to prevent cyclooxygenase-induced dopamine chrome generation in cell-free system. Furthermore, aspirin but not acetaminophen or meloxicam showed direct dopamine quinone-scavenging effects in dopamine-semiquinone generating systems. The present results suggest that cyclooxygenase shows little contribution to dopamine oxidation in dopaminergic cells and that protective effects of aspirin against methyl L-DOPA-induced dopamine quinone neurotoxicity are based on its cyclooxygenase-independent property.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11064-012-0813-2 | DOI Listing |
J Fluoresc
June 2024
College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
Tyrosinase inhibitors have the ability to resist melanin formation and can be used for clinical and cosmetic, so it is becoming extremely crucial to search a rapid and effective method for detecting t the activity of tyrosinase. In this study, a sensing probe based on Nitrogen-doped graphene quantum dots (N-GQDs) were prepared with carbamide and citric acid. Tyrosinase can oxidize dopamine to dopamine quinone, which can quench the fluorescence of N-GQDs based on the principle of fluorescence resonance energy transfer (FRET) process, and then the detection of tyrosinase activity can be achieved.
View Article and Find Full Text PDFBiosensors (Basel)
April 2024
Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
Tyrosinase (TYR) emerges as a key enzyme that exerts a regulatory influence on the synthesis of melanin, thereby assuming the role of a critical biomarker for the detection of melanoma. Detecting the authentic concentration of TYR in the skin remains a primary challenge. Distinguished from ex vivo detection methods, this study introduces a novel sensor platform that integrates a microneedle (MN) biosensor with surface-enhanced Raman spectroscopy (SERS) technology for the in situ detection of TYR in human skin.
View Article and Find Full Text PDFACS Chem Biol
April 2024
Department of Chemistry, University of California, Irvine, California 92617, United States.
Parkinson's disease (PD) etiology is associated with aggregation and accumulation of α-synuclein (α-syn) proteins in midbrain dopaminergic neurons. Emerging evidence suggests that in certain subtypes of PD, α-syn aggregates originate in the gut and subsequently spread to the brain. However, mechanisms that instigate α-syn aggregation in the gut have remained elusive.
View Article and Find Full Text PDFInorg Chem
December 2023
Centre for Clean Environment (CCE), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu,India.
A novel zeolitic tetrazolate framework (ZTF-8) has been synthesized by solvent-free heat-assisted (70 °C) mechanochemical grinding of zinc acetate and 5-methyl tetrazole in the presence of NaOH powder. The structure of ZTF-8 adopts the zeolitic sodalite (SOD) topology with uncoordinated N-heteroatom sites and resembles the structure of the well-known zeolitic imidazole framework ZIF-8. ZTF-8 is exceptionally stable in 0.
View Article and Find Full Text PDFACS Appl Bio Mater
November 2023
Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
It is of great significance for the analysis of multiple biomarkers because a single biomarker is difficult to accurately achieve early diagnosis, disease course monitoring, and prognosis evaluation. Herein, a luminescence thermosensitive hydrogel was synthesized by radical polymerization using a methacrylic acid derivative monomer of luminol (LuMA) as luminescent, -isopropylacrylamide (NIPAM) as thermosensitive monomer, and acrydite-oligonucleotides [dopamine (DA) aptamer, DNA C1, and DNA C2] as recognition elements. The combined DA based on the affinity interaction between the DA and the aptamer on the hydrogel polymer chain was electrochemically oxidized to dopamine quinone during the electrochemiluminescence (ECL) scanning, which effectively quenched the ECL signal of LuMA due to the resonance energy transfer (RET).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!